103 resultados para linear phase response
Resumo:
Observational evidence of gentle chromospheric evaporation during the impulsive phase of a C9.1 solar flare is presented using data from the Reuven Ramaty High-Energy Solar Spectroscopic Imager and the Coronal Diagnostic Spectrometer on board the Solar and Heliospheric Observatory. Until now, evidence of gentle evaporation has often been reported during the decay phase of solar flares, where thermal conduction is thought to be the driving mechanism. Here we show that the chromospheric response to a low flux of nonthermal electrons (>= 5 cm(-2) s(-1)) results in plasma upflows of 13 +/- 16, 16 +/- 18, and 110 +/- 58 km s(-1) in the cool He I and O V emission lines and the 8 MK Fe XIX line, respectively. These findings, in conjunction with other recently reported work, now confirm that the dynamic response of the solar atmosphere is sensitively dependent on the flux of incident electrons.
Resumo:
This paper is concerned with linear and nonlinear magneto- optical effects in multilayered magnetic systems when treated by the simplest phenomenological model that allows their response to be represented in terms of electric polarization, The problem is addressed by formulating a set of boundary conditions at infinitely thin interfaces, taking into account the existence of surface polarizations. Essential details are given that describe how the formalism of distributions (generalized functions) allows these conditions to be derived directly from the differential form of Maxwell's equations. Using the same formalism we show the origin of alternative boundary conditions that exist in the literature. The boundary value problem for the wave equation is formulated, with an emphasis on the analysis of second harmonic magneto-optical effects in ferromagnetically ordered multilayers. An associated problem of conventions in setting up relationships between the nonlinear surface polarization and the fundamental electric field at the interfaces separating anisotropic layers through surface susceptibility tensors is discussed. A problem of self- consistency of the model is highlighted, relating to the existence of resealing procedures connecting the different conventions. The linear approximation with respect to magnetization is pursued, allowing rotational anisotropy of magneto-optical effects to be easily analyzed owing to the invariance of the corresponding polar and axial tensors under ordinary point groups. Required representations of the tensors are given for the groups infinitym, 4mm, mm2, and 3m, With regard to centrosymmetric multilayers, nonlinear volume polarization is also considered. A concise expression is given for its magnetic part, governed by an axial fifth-rank susceptibility tensor being invariant under the Curie group infinityinfinitym.
Resumo:
Background: The purpose of this study was to assess the efficacy and safety of ISIS 3521, an antisense phosphorothioate oligonucleotide to protein kinase C in patients with relapsed low-grade non-Hodgkin's lymphoma (NHL). Patients and methods: Twenty-six patients received ISIS 3521 (2 mg/kg/day) as a continuous infusion over 21 days of each 28-day cycle. Results: The median age of the patients was 53 years (range 37–77). Histological subtypes were low-grade follicular lymphoma (n=22) and B-cell small lymphocytic lymphoma (n=4). Twenty-one (81%) had stage III/IV disease. The median number of previous lines of chemotherapy was two (range one to six). A total of 87 cycles of ISIS 3521 were administered. Twenty-three patients were assessable for response. Three patients achieved a partial response. No complete responses were observed. Ten patients had stable disease. Grade 3–4 toxicity was as follows: neutropenia (3.8%) and thrombocytopenia (26.9%). Conclusions: ISIS 3521 has demonstrated anti-tumour activity in patients with relapsed low-grade NHL. There may be a potential role for this agent in combination with conventional chemotherapy for advanced low-grade lymphoma, and further trials are warranted.
Resumo:
The nonlinear propagation of finite amplitude ion acoustic solitary waves in a plasma consisting of adiabatic warm ions, nonisothermal electrons, and a weakly relativistic electron beam is studied via a two-fluid model. A multiple scales technique is employed to investigate the nonlinear regime. The existence of the electron beam gives rise to four linear ion acoustic modes, which propagate at different phase speeds. The numerical analysis shows that the propagation speed of two of these modes may become complex-valued (i.e., waves cannot occur) under conditions which depend on values of the beam-to-background-electron density ratio , the ion-to-free-electron temperature ratio , and the electron beam velocity v0; the remaining two modes remain real in all cases. The basic set of fluid equations are reduced to a Schamel-type equation and a linear inhomogeneous equation for the first and second-order potential perturbations, respectively. Stationary solutions of the coupled equations are derived using a renormalization method. Higher-order nonlinearity is thus shown to modify the solitary wave amplitude and may also deform its shape, even possibly transforming a simple pulse into a W-type curve for one of the modes. The dependence of the excitation amplitude and of the higher-order nonlinearity potential correction on the parameters , , and v0 is numerically investigated.
Resumo:
The safety and maximum tolerated dose (MTD) of erlotinib with docetaxel/carboplatin were assessed in patients with ovarian cancer. Chemonaive patients received intravenous docetaxel (75 mg m(-2)) and carboplatin (area under the curve 5) on day 1 of a 3-week cycle, and oral erlotinib at 50 (cohort 1), 100 (cohort 2a) or 75 mg day(-1) (cohort 2b) for up to six cycles. Dose-limiting toxicities were determined in cycle 1. Forty-five patients (median age 59 years) received treatment. Dose-limiting toxicities occurred in 1/5/5 patients (cohorts 1/2a/2b). The MTD of erlotinib in this regimen was determined to be 75 mg day(-1) (cohort 2b; the erlotinib dose was escalated to 100 mg day(-1) in 11 out of 19 patients from cycle 2 onwards). Neutropaenia was the predominant grade 3/4 haematological toxicity (85/100/95% respectively). Common non-haematological toxicities were diarrhoea, fatigue, nausea and rash. There were five complete and seven partial responses in 23 evaluable patients (52% response rate). Docetaxel/carboplatin had no measurable effect on erlotinib pharmacokinetics. In subsequent single-agent maintenance, erlotinib was given at 100-150 mg day(-1), with manageable toxicity, until tumour progression. Further investigation of erlotinib in epithelial ovarian carcinoma may be warranted, particularly as maintenance therapy
Resumo:
The performance of a very low loss frequency selective surface (FSS) comprising two air spaced planar arrays of linear slot elements is reported. The beamsplitter generates a low loss passband response with a very sharp transmission roll-off with frequency. Simulated and measured results in the 30 GHz and 300 GHz wavebands are used to quantify the performance improvement compared to a conventional multilayer dielectrically backed conducting ring FSS. The paper also discusses the effect of the array dimensions on the passband width and filter roll-off rate.
Resumo:
This paper gives the first experimental characterisation of the phase noise response of the recently introduced Inverse Class E topology when operated as an amplifier and then as an oscillator. The results indicate that in amplifier and oscillator modes of operation conversion efficiencies of 64%, and 42% respectively are available, and that the excess PM noise added as a consequence of saturated Class E operation results in about a 10 dB increase in PM over that expected from a small-signal Class A amplifier operating at much lower efficiency. Inverse Class E phase transfer dependence on device drain bias and flicker noise are presented in order to show, respectively, that the Inverse Class E amplifier and oscillator follow the trends predicted by conventional phase noise theory. © 2007 EuMA.
Resumo:
The extraction of electrode kinetic parameters for electrochemical couples in room-temperature ionic liquids (RTILs) is currently an area of considerable interest. Electrochemists typically measure electrode kinetics in the limits of either transient planar or steady-state convergent diffusion for which the voltammetic response is well understood. In this paper we develop a general method allowing the extraction of this kinetic data in the region where the diffusion is intermediate between the planar and convergent limits, such as is often encountered in RTILs using microelectrode voltammetry. A general working surface is derived, allowing the inference of Butler-Volmer standard electrochemical rate constants for the peak-to-peak potential separation in a cyclic voltammogram as a function of voltage scan rate. The method is applied to the case of the ferrocene/ferrocenium couple in [C(2)mim][N(Tf)(2)] and [C(4)mim][N(Tf)(2)].
Resumo:
Inductively coupled radio-frequency plasmas can be operated in two distinct modes. At low power and comparatively low plasma densities the plasma is sustained in capacitive mode (E-mode). As the plasma density increases a transition to inductive mode (H-mode) is observed. This transition region is of particular interest and governed by non-linear dynamics, which under certain conditions results in structure formation with strong spatial gradients in light emission. These modes show pronounced differences is various measureable quantities e.g. electron densities, electron energy distribution functions, ion energy distribution functions, dynamics of optical light emission. Here the transition from E- to H- mode in an oxygen containing inductively coupled plasma (ICP) is investigated using space and phase resolved optical emission spectroscopy (PROES). The emission, measured phase resolved, allows investigation of the electron dynamics within the rf cycle, important for understanding the power coupling and ionization mechanisms in the discharge. The temporal variation of the emission reflects the dynamics of relatively high-energy electrons. It is possible to distinguish between E- and H-mode from the intensity and temporal behaviour of the emission.
Resumo:
P-glycoprotein (Pgp) antagonists have had unpredictable pharmacokinetic interactions requiring reductions of chemotherapy. We report a phase I study using tariquidar (XR9576), a potent Pgp antagonist, in combination with vinorelbine. EXPERIMENTAL DESIGN: Patients first received tariquidar alone to assess effects on the accumulation of (99m)Tc-sestamibi in tumor and normal organs and rhodamine efflux from CD56+ mononuclear cells. In the first cycle, vinorelbine pharmacokinetics was monitored after the day 1 and 8 doses without or with tariquidar. In subsequent cycles, vinorelbine was administered with tariquidar. Tariquidar pharmacokinetics was studied alone and with vinorelbine. RESULTS: Twenty-six patients were enrolled. Vinorelbine 20 mg/m(2) on day 1 and 8 was identified as the maximum tolerated dose (neutropenia). Nonhematologic grade 3/4 toxicities in 77 cycles included the following: abdominal pain (4 cycles), anorexia (2), constipation (2), fatigue (3), myalgia (2), pain (4) and dehydration, depression, diarrhea, ileus, nausea, and vomiting, (all once). A 150-mg dose of tariquidar: (1) reduced liver (99m)Tc-sestamibi clearance consistent with inhibition of liver Pgp; (2) increased (99m)Tc-sestamibi retention in a majority of tumor masses visible by (99m)Tc-sestamibi; and (3) blocked Pgp-mediated rhodamine efflux from CD56+ cells over the 48 hours examined. Tariquidar had no effects on vinorelbine pharmacokinetics. Vinorelbine had no effect on tariquidar pharmacokinetics. One patient with breast cancer had a minor response, and one with renal carcinoma had a partial remission. CONCLUSIONS: Tariquidar is a potent Pgp antagonist, without significant side effects and much less pharmacokinetic interaction than previous Pgp antagonists. Tariquidar offers the potential to increase drug exposure in drug-resistant cancers.
Resumo:
Both experimental and theoretical information regarding the scattering and phase conjugate mixing properties of a 2D double-periodic array of wires loaded with nonlinear/linear lumped elements have been provided. An experimental means for assessing the phase conjugate energy production capability for the array is given. These investigations enable identification of the fundamental operational characteristics and underlying mechanisms associated with the production of phase conjugate energy by this type of artificial electromagnetic media. Means for enhancing the phase conjugate energy production capability of the structure by using additional linear lumped loads is examined theoretically and limits on the production of phase conjugate energy established. Theoretical far-field prediction of the behaviour of the structure indicates that retro-directive reflector action as well as negative refraction should be possible.
Resumo:
Bovine serum albumin (BSA) is a commonly used model protein in the development of pharmaceutical formulations. In order to assay its release from various dosage forms, either the bicinchoninic acid (BCA) assay or a more specific size-exclusion high performance liquid chromatography (SE-HPLC) method are commonly employed. However, these can give erroneous results in the presence of some commonly-used pharmaceutical excipients. We therefore investigated the ability of these methods to accurately determine BSA concentrations in pharmaceutical formulations that also contained various polymers and compared them with a new and compared with a new reverse-phase (RP)–HPLC technique. We found that the RP-HPLC technique was the most suitable method. It gave a linear response in the range of 0.5 -100 µg/ml with a correlation coefficient of 0.9999, a limit of detection of 0.11 µg/ml and quantification of 0.33 µg/ml. The performed ‘t’ test for the estimated and theoretical concentration indicated no significant difference between them providing the accuracy. Low % relative standard deviation values (0.8-1.39%) indicate the precision of the method. Furthermore, the method was used to quantify in vitro BSA release from polymeric freeze-dried formulations.
Resumo:
This study identifies ataxia-telangiectasia mutated (ATM) as a further component of the complex signaling network of radiation-induced DNA damage in nontargeted bystander cells downstream of ataxia-telangiectasia and Rad3-related (ATR) and provides a rationale for molecular targeted modulation of these effects. In directly irradiated cells, ATR, ATM, and DNA-dependent protein kinase (DNA-PK) deficiency resulted in reduced cell survival as predicted by the known important role of these proteins in sensing DNA damage. A decrease in clonogenic survival was also observed in ATR/ATM/DNA-PK–proficient, nonirradiated bystander cells, but this effect was completely abrogated in ATR and ATM but not DNA-PK–deficient bystander cells. ATM activation in bystander cells was found to be dependent on ATR function. Furthermore, the induction and colocalization of ATR, 53BP1, ATM-S1981P, p21, and BRCA1 foci in nontargeted cells was shown, suggesting their involvement in bystander DNA damage signaling and providing additional potential targets for its modulation. 53BP1 bystander foci were induced in an ATR-dependent manner predominantly in S-phase cells, similar to ?H2AX foci induction. In conclusion, these results provide a rationale for the differential modulation of targeted and nontargeted effects of radiation.
Resumo:
An architecture to simultaneously affect both amplitude and phase control from a reflectarray element using an impedance transformation unit is demonstrated. It is shown that a wide range of control is possible from a single element, removing the conventional necessity for variable sized elements across an array in order to form a desired reflectarray far-field pattern. Parallel plate waveguide measurements for a 2.2 GHz prototype element validate the phase and amplitude variation available from the element. It is demonstrated that there is sufficient control of the element's reflection response to allow Dolph-Tschebyscheff weighting coefficients for major-lobe to side-lobe ratios of up to 36 dB to be implemented.
Resumo:
A non-linear lumped model of the reed-mouthpiece-lip system of a clarinet is formulated, in which the lumped parameters are derived from numerical experiments with a finite-difference simulation based on a distributed reed model. The effective stiffness per unit area is formulated as a function of the pressure signal driving the reed, in order to simulate the effects of the reed bending against the lay, and mass and damping terms are added as a first approximation to the dynamic behaviour of the reed. A discrete-time formulation is presented, and its response is compared to that of the distributed model. In addition, the lumped model is applied in the simulation of clarinet tones, enabling the analysis of the effects of using a pressure-dependent stiffness per unit area on sustained oscillations. The analysed effects and features are in qualitative agreement with players' experiences and experimental results obtained in prior studies.