71 resultados para light-scattering center super-resolution near-field structure (LSC-Super-RENS) nonlinearity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic magnetic properties of arrays of Ni nanorods with a low aspect ratio have been investigated. It has been shown that the spectra of spin-wave resonances localized on nanorods with a low aspect ratio typically feature the presence of zones with high density of states resulting in a characteristic two-peak pattern of Stokes and anti-Stokes lines of magneto-optical (MO) Brillouin light scattering with pronounced Stokes–anti-Stokes (S-AS) asymmetry. A simple theoretical model based on the analysis of the elliptic character of the polarization of the optical wave interacting with a dipole magnetostatic wave has been proposed. It has been shown that the S-AS asymmetry is due entirely to the asymmetry of the MO interaction efficiency with respect to time reversal of the magnetic precession in a magnon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the investigations of spin wave modes in arrays of densely packed Co nanorods using Brillouin light scattering. We have observed a significant role of spin wave modes along the nanorod axis in contrast to infinite magnetic nanowires. Unusual optical properties featuring an inverted Stokes/anti-Stokes asymmetry of the Brillouin scattering spectra have been observed. The spectrum of spin wave modes in the nanorod array has been calculated and compared with the experiment. Experimental observations are explained in terms of a combined numerical-analytical approach taking into account both the low aspect ratio of individual magnetic nanorods and dipolar magnetic coupling between the nanorods in the array. The optical studies of spin-wave modes in the metamaterials with low aspect ratio nanorods have revealed new magnetic and magneto-optical properties compared to continuous magnetic films or infinite magnetic nanowires. Such magnetic metamaterials are important class of active metamaterials needed for prospective data storage and signal processing applications. (c) 2012 Optical Society of America

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The imaging properties of a phase conjugating lens operating in the far field zone of the imaged source and augmented with scatterers positioned in the source near field region are theoretically studied in this paper. The phase conjugating lens consists of a double sided 2D assembly of straight wire elements, individually interconnected through phase conjugation operators. The scattering elements are straight wire segments which are loaded with lumped impedance loads at their centers. We analytically and numerically analyze all stages of the imaging process; i) evanescent-to-propagating spectrum conversion; ii) focusing properties of infinite or finite sized phase conjugating lens; iii) source reconstruction upon propagating-to-evanescent spectrum conversion. We show that the resolution that can be achieved depends critically on the separation distance between the imaged source and scattering arrangement, as well as on the topology of the scatterers used. Imaged focal widths of up to one-seventh wavelength are demonstrated. The results obtained indicate the possibility of such an arrangement as a potential practical means for realising using conventional materials devices for fine feature extraction by electromagnetic lensing at distances remotely located from the source objects under investigation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dielectric properties of BaTiO3 thin films and multilayers are different from bulk materials because of nanoscale dimensions, interfaces, and stress-strain conditions. In this study, BaTiO3/SrTiO3 multilayers deposited on SrTiO3 substrates by pulsed laser deposition have been investigated by high-energy-resolution electron energy-loss spectroscopy. The fine structures in the spectra are discussed in terms of crystal-field splitting and the internal strain. The crystal-field splitting of the BaTiO3 thin layer is found to be a little larger than that of bulk BaTiO3, which has been interpreted by the presence of the internal strain induced by the misfit at the interface. This finding is consistent with the lattice parameters of the BaTiO3 thin layer determined by the selected area diffraction pattern. The near-edge structure of the oxygen K edge in BaTiO3 thin layers and in bulk BaTiO3 are simulated by first-principle self-consistent full multiple-scattering calculations. The results of the simulations are in a good agreement with the experimental results. Moreover, the aggregation of oxygen vacancies at the rough BaTiO3/SrTiO3 interface is indicated by the increased [Ti]/[O] element ratio, which dominates the difference of dielectric properties between BaTiO3 layer and bulk materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we present position indication functionality as obtained by using a retrodirective array, thereby allowing location information extraction of the position of the remote transmitter with which the retrodirective array is cooperating. This is carried out using straightforward circuitry with no requirement for complex angle of arrival algorithms, thereby giving a result in real time enabling tracking of fast moving transmitters. We show using a 10 x element retrodirective array, operating at 2.4 GHz that accuracies of far-field angle of arrival of within +/- 1 degrees over the arrays +/- 30 degrees azimuth field of view are possible. While in the near-field for angles of arrival of +/- 10 degrees it is possible to extract the position of a dipole source down to a resolution of 032 lambda. (C) 2010 Wiley Periodicals, Inc. Microwave Opt Technol Lett 52: 1031-1034, 2010; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.25097

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a novel nanolens with super resolution, based on the photon nanojet effect through dielectric nanostructures in visible wavelengths, is proposed. The nanolens is made from plastic SU-8, consisting of parallel semi-cylinders in an array. This paper focuses on the lens designed by numerical simulation with the finite-difference time domain method and nanofabrication of the lens by grayscale electron beam lithography combined with a casting/bonding/lift-off transfer process. Monte Carlo simulation for injected charge distribution and development modeling was applied to define the resultant 3D profile in PMMA as the template for the lens shape. After the casting/bonding/lift-off process, the fabricated nanolens in SU-8 has the desired lens shape, very close to that of PMMA, indicating that the pattern transfer process developed in this work can be reliably applied not only for the fabrication of the lens but also for other 3D nanopatterns in general. The light distribution through the lens near its surface was initially characterized by a scanning near-field optical microscope, showing a well defined focusing image of designed grating lines. Such focusing function supports the great prospects of developing a novel nanolithography based on the photon nanojet effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arguments are given that lead to a formalism for calculating near K-edge structure in electron energy loss spectroscopy (EELS). This is essentially a one electron picture, while many body effects may be introduced at different levels, such as the local density approximation to density functional theory or the GW approximation to the electron self-energy. Calculations are made within the all electron LMTO scheme in crystals with complex atomic and electronic structures, and these are compared with experiment. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report that subwavelength localization of light in the near-field of a double-periodic photonic metamaterial may be efficiently controlled by the polarization and wavelength of the incident radiation. A dramatic variation in the periodic near-field landscapes, including a transition from a pattern of isolated subwavelength plasmon hot-spots to a blurred, low contrast pattern, accompanied by a change in the pattern's symmetry has been observed in the proximity of an aluminum nanowire "fish-scale" nanostructure. Hot-spots as small as 0.23 lambda have been achieved and their position has been controlled by tuning the wavelength of incident light across the dipole absorption resonance of the metamaterial. A simple switch of the polarization state can lead to a spatial period doubling in the landscape pattern.