36 resultados para kirkwood superposition approximation
Resumo:
An approximate Kohn-Sham (KS) exchange potential v(xsigma)(CEDA) is developed, based on the common energy denominator approximation (CEDA) for the static orbital Green's function, which preserves the essential structure of the density response function. v(xsigma)(CEDA) is an explicit functional of the occupied KS orbitals, which has the Slater v(Ssigma) and response v(respsigma)(CEDA) potentials as its components. The latter exhibits the characteristic step structure with "diagonal" contributions from the orbital densities \psi(isigma)\(2), as well as "off-diagonal" ones from the occupied-occupied orbital products psi(isigma)psi(j(not equal1)sigma). Comparison of the results of atomic and molecular ground-state CEDA calculations with those of the Krieger-Li-Iafrate (KLI), exact exchange (EXX), and Hartree-Fock (HF) methods show, that both KLI and CEDA potentials can be considered as very good analytical "closure approximations" to the exact KS exchange potential. The total CEDA and KLI energies nearly coincide with the EXX ones and the corresponding orbital energies epsilon(isigma) are rather close to each other for the light atoms and small molecules considered. The CEDA, KLI, EXX-epsilon(isigma) values provide the qualitatively correct order of ionizations and they give an estimate of VIPs comparable to that of the HF Koopmans' theorem. However, the additional off-diagonal orbital structure of v(xsigma)(CEDA) appears to be essential for the calculated response properties of molecular chains. KLI already considerably improves the calculated (hyper)polarizabilities of the prototype hydrogen chains H-n over local density approximation (LDA) and standard generalized gradient approximations (GGAs), while the CEDA results are definitely an improvement over the KLI ones. The reasons of this success are the specific orbital structures of the CEDA and KLI response potentials, which produce in an external field an ultranonlocal field-counteracting exchange potential. (C) 2002 American Institute of Physics.
Resumo:
Optomechanics is currently believed to provide a promising route towards the achievement of genuine quantum effects at the large, massive-system scale. By using a recently proposed figure of merit that is well suited to address continuous-variable systems, in this paper we analyze the requirements needed for the state of a mechanical mode (embodied by an end-cavity cantilever or a membrane placed within an optical cavity) to be qualified as macroscopic. We show that, according to the phase space-based criterion that we have chosen for our quantitative analysis, the state achieved through strong single-photon radiation-pressure coupling to a quantized field of light and conditioned by measurements operated on the latter might be interpreted as macroscopically quantum. In general, though, genuine macroscopic quantum superpositions appear to be possible only under quite demanding experimental conditions
Resumo:
Using a different approach to that of Popa, we arrive at an alternative definition
of the positive approximation property for order complete Banach lattices.
Some results associated with this new approach may be of independent interest. We
also prove a Banach lattice analogue of an old characterization, due to Palmer, of
the metric approximation property in terms of the continuous bidual of the ideal of
approximable operators.