149 resultados para iodine deficiency disorders
Resumo:
Ataxia with vitamin E deficiency is caused by mutations in a-tocopherol transfer protein (a-TTP) gene and it can be experimentally generated in mice by a-TTP gene inactivation (a-TTP-KO). This study compared a-tocopherol (a-T) concentrations of five brain regions and of four peripheral organs from 5 months old, male and female, wild-type (WT) and a-TTP-KO mice. All brain regions of female WT mice contained significantly higher a-T than those from WT males. a-T concentration in the cerebellum was significantly lower than that in other brain regions of WT mice. These sex and regional differences in brain a-T concentrations do not appear to be determined by a-TTP expression which was undetectable in all brain regions. All the brain regions of a-TTP-KO mice were severely depleted in a-T. The concentration of another endogenous antioxidant, total glutathione, was unaffected by gender but was decreased slightly but significantly in most brain regions of a-TTP-KO mice. The results show that both gender and the hepatic a-TTP, but not brain a-TTP gene expression are important in determining a-T concentrations within the brain. Interestingly, functional abnormality (ataxia) develops only very late in a-TTP-KO mice in spite of the severe a-tocopherol deficiency in the brain starting at an early age.
Homocysteine and methylmalonic acid as indicators of folate and vitamin B12 deficiency in pregnancy.
Resumo:
The fast electrochemical reduction of iodine in the RTIL 1-butyl-3-methylimidazolium bis(trifluoromethyl-sulfonyl)imide, [C(4)mim][NTf2], is reported and the kinetics and mechanism of the process elucidated. Two reduction peaks were observed. The first reduction peak is assigned to the process
Resumo:
Some 60 years ago, Quentin Gibson reported the first hereditary disorder involving an enzyme when he deduced that familial methaemoglobinaemia was caused by an enzymatic lesion associated with the glycolysis pathway in red blood cells. This disorder, now known as recessive congenital methaemoglobinaemia (RCM), is caused by NADH-cytochrome b5 reductase (cb(5)r) deficiency. Two distinct clinical forms, types I and II, have been recognized, both characterized by cyanosis from birth. In type II, the cyanosis is accompanied by neurological impairment and reduced life expectancy. Cytochrome b(5) reductase is composed of one FAD and one NADH binding domain linked by a hinge region. It is encoded by the CYB5R3 (previously known as DIA1) gene and more than 40 mutations have been described, some of which are common to both types of RCM. Mutations associated with type II tend to cause incorrect splicing, disruption of the active site or truncation of the protein. At present the description of the sequence variants of cb(5)r in the literature is confusing, due to the use of two conventions which differ by one codon position. Herein we propose a new system for nomenclature of cb(5)r based on recommendations of the Human Genome Variation Society. The development of a heterologous expression system has allowed the impact of naturally occurring variants of cb(5)r to be assessed and has provided insight into the function of cb(5)r.
Resumo:
Maternal vitamin D insufficiency is associated with childhood rickets and longer-term problems including schizophrenia and type 1 diabetes. Whilst maternal vitamin D insufficiency is common in mothers with highly pigmented skin, little is known about vitamin D status of Caucasian pregnant women. The aim was to investigate vitamin D status in healthy Caucasian pregnant women and a group of age-matched non-pregnant controls living at 54–55°N. In a longitudinal study, plasma 25-hydroxyvitamin D (25(OH)D) was assessed in ninety-nine pregnant women at 12, 20 and 35 weeks of gestation, and in thirty-eight non-pregnant women sampled concurrently. Plasma 25(OH)D concentrations were lower in pregnant women compared to non-pregnant women (P < 0·0001). Of the pregnant women, 35, 44 and 16 % were classified as vitamin D deficient (25(OH)D < 25 nmol/l), and 96, 96 and 75 % were classified as vitamin D insufficient (25(OH)D < 50 nmol/l) at 12, 20 and 35 weeks gestation, respectively. Vitamin D status was higher in pregnant women who reported taking multivitamin supplements at 12 (P < 0·0001), 20 (P = 0·001) and 35 (P = 0·001) weeks gestation than in non-supplement users. Vitamin D insufficiency is evident in pregnant women living at 54–55°N. Women reporting use of vitamin D-containing supplements had higher vitamin D status, however, vitamin D insufficiency was still evident even in the face of supplement use. Given the potential consequences of hypovitaminosis D on health outcomes, vitamin D supplementation, perhaps at higher doses than currently available, is needed to improve maternal vitamin D nutriture.
Resumo:
Several studies have reported imitative deficits in autism spectrum disorder (ASD). However, it is still debated if imitative deficits are specific to ASD or shared with clinical groups with similar mental impairment and motor difficulties. We investigated whether imitative tasks can be used to discriminate ASD children from typically developing children (TD) and children with general developmental delay (GDD). We applied discriminant function analyses to the performance of these groups on three imitation tasks and tests of dexterity, motor planning, verbal skills, theory of mind (ToM). Analyses revealed two significant dimensions. The first represented impairment of dexterity and verbal ability, and discriminated TD from GDD children. Once these differences were accounted for, differences in ToM and the three imitation tasks accounted for a significant proportion of the remaining intergroup variance and discriminated the ASD group from other groups. Further analyses revealed that inclusion of imitative tasks increased the specificity and sensitivity of ASD classification and that imitative tasks considered alone were able to reliably discriminate ASD, TD and GDD. The results suggest that imitation and theory of mind impairment in autism may stem from a common domain of origin separate from general cognitive and motor skill.
Resumo:
We have previously shown that mice lacking the IL-12-specific receptor subunit ß2 (IL-12Rß2) develop more severe experimental autoimmune encephalomyelitis than wild-type (WT) mice. The mechanism underlying this phenomenon is not known; nor is it known whether deficiency of IL-12Rß2 impacts other autoimmune disorders similarly. In the present study we demonstrate that IL-12Rß2-/- mice develop earlier onset and more severe disease in the streptozotocin-induced model of diabetes, indicating predisposition of IL-12Rß2-deficient mice to autoimmune diseases. T cells from IL-12Rß2-/- mice exhibited significantly higher proliferative responses upon TCR stimulation. The numbers of naturally occurring CD25+CD4+ regulatory T cells (Tregs) in the thymus and spleen of IL-12Rß2-/- mice were comparable to those of WT mice. However, IL-12Rß2-/- mice exhibited a significantly reduced capacity to develop Tregs upon stimulation with TGF-ß, as shown by significantly lower numbers of CD25+CD4+ T cells that expressed Foxp3. Functionally, CD25+CD4+ Tregs derived from IL-12Rß2-/- mice were less efficient than those from WT mice in suppressing effector T cells. The role of IL-12Rß2 in the induction of Tregs was confirmed using small interfering RNA. These findings suggest that signaling via IL-12Rß2 regulates both the number and functional maturity of Treg cells, which indicates a novel mechanism underlying the regulation of autoimmune diseases by the IL-12 pathway. Copyright © 2008 by The American Association of Immunologists, Inc.
Resumo:
BACKGROUND/AIMS:
Chronic inhibition of nitric oxide (NO) synthesis is associated with hypertension, myocardial ischemia, oxidative stress and hypertrophy; expression of the vasodilator peptide, adrenomedullin (AM) and its receptors is augmented in cardiomyocytes, indicating that the myocardial AM system may be activated in response to pressure loading and ischemic insult to serve a counter-regulatory, cardio-protective role. The study examined the hypothesis that oxidative stress and hypertrophic remodeling in NO-deficient cardiomyocytes are attenuated by adenoviral vector-mediated delivery of the human adrenomedullin (hAM) gene in vivo.
METHODS:
The NO synthesis inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME, 15mg . kg(-1) . day(-1)) was given to rats for 4 weeks following systemic administration via the tail vein of a single injection of either adenovirus harbouring hAM cDNA under the control of the cytomegalovirus promoter-enhancer (Ad.CMV-hAM-4F2), or for comparison, adenovirus alone (Ad.Null) or saline. Cardiomyocytes were subsequently isolated for assessment of the influence of each intervention on parameters of oxidative stress and hypertrophic remodelling.
RESULTS: Cardiomyocyte expression of the transgene persisted for > or =4 weeks following systemic administration of adenoviral vector. In L-NAME treated rats, relative to Ad.Null or saline administration, Ad.CMV-hAM-4F2 (i) reduced augmented cardiomyocyte membrane protein oxidation and mRNA expression of pro-oxidant (p22phox) and anti-oxidant (SOD-3, GPx) genes; (ii) attenuated increased cardiomyocyte width and mRNA expression of hypertrophic (sk-alpha-actin) and cardio-endocrine (ANP) genes; (iii) did not attenuate hypertension.
CONCLUSIONS: Adenoviral vector mediated delivery of hAM resulted in attenuation of myocardial oxidative stress and hypertrophic remodelling in the absence of blood pressure reduction in this model of chronic NO-deficiency. These findings are consistent with a direct cardio-protective action in the myocardium of locally-derived hAM which is not dependant on NO generation.