57 resultados para intracellular ROS
Resumo:
Strains of the Burkholderia cepacia complex have emerged as a serious threat to patients with cystic fibrosis due to their ability to infect the lung and cause, in some patients, a necrotizing pneumonia that is often lethal. It has recently been shown that several strains of the B. cepacia complex can escape intracellular killing by free-living amoebae following phagocytosis. In this work, the ability of two B. cepacia complex strains to resist killing by macrophages was explored. Using fluorescence microscopy, electron microscopy and a modified version of the gentamicin-protection assay, we demonstrate that B. cepacia CEP021 (genomovar VI), and Burkholderia vietnamiensis (previously B. cepacia genomovar V) CEP040 can survive in PU5-1.8 murine macrophages for a period of at least 5 d without significant bacterial replication. Furthermore, bacterial entry into macrophages stimulated production of tumour necrosis factor and primed them to release toxic oxygen radicals following treatment with phorbol myristoyl acetate. These effects were probably caused by bacterial LPS, as they were blocked by polymyxin B. Infected macrophages primed with interferon gamma produced less nitric oxide than interferon-gamma-primed uninfected cells. We propose that the ability of B. cepacia to resist intracellular killing by phagocytic cells may play a role in the pathogenesis of cystic fibrosis lung infection. Our data are consistent with a model where repeated cycles of phagocytosis and cellular activation without bacterial killing may promote a deleterious inflammatory response causing tissue destruction and decay of lung function.
Resumo:
Members of the taxonomically diverse Burkholderia cepacia complex have become a major health risk for patients with cystic fibrosis (CF). Although patient-to-patient transmission of B. cepacia strains has been well-documented, very little is known about possible vehicles of transmission and reservoirs for these micro-organisms. In this work, it is shown that strains of the B. cepacia complex can survive within different isolates of the genus Acanthamoeba. Trophozoites containing bacteria developed profuse cytoplasmic vacuolization. Vacuolization was not detected in trophozoites infected with live Escherichia coli or heat-killed B. cepacia, or by incubation of trophozoites with filter-sterilized culture supernatants, indicating that metabolically active intracellular bacteria are required for the formation of vacuoles. Experiments with two different B. cepacia strains and two different Acanthamoeba isolates revealed that bacteria display a low level of intracellular replication approximately 72-96 h following infection. In contrast, extracellular bacteria multiplied efficiently on by-products released by amoebae. The findings suggest that amoebae may be a reservoir for B. cepacia and possibly a vehicle for transmission of this opportunistic pathogen among CF patients.
Resumo:
High ambient glucose activates intracellular signaling pathways to induce the expression of extracellular matrix and cytokines such as connective tissue growth factor (CTGF). Cell responses to CTGF in already glucose-stressed cells may act to transform the mesangial cell phenotype leading to the development of glomerulosclerosis. We analyzed cell signaling downstream of CTGF in high glucose-stressed mesangial cells to model signaling in the diabetic milieu. The addition of CTGF to primary human mesangial cells activates cell migration which is associated with a PKC-zeta-GSK3beta signaling axis. In high ambient glucose basal PKC-zeta and GSK3beta phosphorylation levels are selectively increased and CTGF-stimulated PKC-zeta and GSK3beta phosphorylation was impaired. These effects were not induced by osmotic changes. CTGF-driven profibrotic cell signaling as determined by p42/44 MAPK and Akt phosphorylation was unaffected by high glucose. Nonresponsiveness of the PKC-zeta-GSK3beta signaling axis suppressed effective remodeling of the microtubule network necessary to support cell migration. However, interestingly the cells remain plastic: modulation of glucose-induced PKC-beta activity in human mesangial cells reversed some of the pathological effects of glucose damage in these cells. We show that inhibition of PKC-beta with LY379196 and PKC-beta siRNA reduced basal PKC-zeta and GSK3beta phosphorylation in human mesangial cells exposed to high glucose. CTGF stimulation under these conditions again resulted in PKC-zeta phosphorylation and human mesangial cell migration. Regulation of PKC-zeta by PKC-beta in this instance may establish PKC-zeta as a target for constraining the progression of mesangial cell dysfunction in the pathogenesis of diabetic nephropathy.
Resumo:
Burkholderia cenocepacia is an opportunistic pathogen that causes chronic infection and induces progressive respiratory inflammation in cystic fibrosis patients. Recognition of bacteria by mononuclear cells generally results in the activation of caspase-1 and processing of IL-1ß, a major proinflammatory cytokine. In this study, we report that human pyrin is required to detect intracellular B. cenocepacia leading to IL-1ß processing and release. This inflammatory response involves the host adapter molecule ASC and the bacterial type VI secretion system (T6SS). Human monocytes and THP-1 cells stably expressing either small interfering RNA against pyrin or YFP-pyrin and ASC (YFP-ASC) were infected with B. cenocepacia and analyzed for inflammasome activation. B. cenocepacia efficiently activates the inflammasome and IL-1ß release in monocytes and THP-1. Suppression of pyrin levels in monocytes and THP-1 cells reduced caspase-1 activation and IL-1ß release in response to B. cenocepacia challenge. In contrast, overexpression of pyrin or ASC induced a robust IL-1ß response to B. cenocepacia, which correlated with enhanced host cell death. Inflammasome activation was significantly reduced in cells infected with T6SS-defective mutants of B. cenocepacia, suggesting that the inflammatory reaction is likely induced by an as yet uncharacterized effector(s) of the T6SS. Together, we show for the first time, to our knowledge, that in human mononuclear cells infected with B. cenocepacia, pyrin associates with caspase-1 and ASC forming an inflammasome that upregulates mononuclear cell IL-1ß processing and release.
Resumo:
Erythropoietin (Epo), a glycoprotein hormone produced principally in the fetal kidney and in the adult liver in response to hypoxia, is the prime regulator of growth and differentiation in erythroid progenitor cells. The regulation of Epo gene expression is not fully understood, but two mechanisms have been proposed. One involves the participation of a heme protein capable of reversible oxygenation and the other depends on the intracellular concentration of reactive oxygen species (ROS), assumed to be a function of pO2. We have investigated the production of Epo in response to three stimuli, hypoxia, cobalt chloride, and the iron chelator desferrioxamine, in Hep3B cells. As expected, hypoxia caused a marked rise in Epo production. When the cells were exposed to the paired stimuli of hypoxia and cobalt no further increase was found. In contrast, chelation of iron under hypoxic conditions markedly enhanced Epo production, suggesting that the two stimuli act by separate pathways. The addition of carbon monoxide inhibited hypoxia-induced Epo production, independent of desferrioxamine concentration. Taken together these data support the concept that pO2 and ROS are sensed independently.
Resumo:
The excretory-secretory (ES) proteins of nematode parasites are of major interest as they function at the host-parasite interface and are likely to have roles crucial for successful parasitism. Furthermore, the ES proteins of intracellular nematodes such as Trichinella spiralis may also function to regulate gene expression in the host cell. In a recent proteomic analysis we identified a novel secreted cystatin-like protein from T. spiralis L1 muscle larva. Here we show that the protein, MCD-1 (multi-cystatin-like domain protein 1), contains three repeating cystatin-like domains and analysis of the mcd-1 gene structure suggests that the repeated domains arose from duplication of an ancestral cystatin gene. Cystatins are a diverse group of cysteine protease inhibitors and those secreted by parasitic nematodes are important immuno-modulatory factors. The cystatin superfamily also includes cystatin-like proteins that have no cysteine protease inhibitory activity. A recombinant MCD-1 protein expressed as a GST-fusion protein in Escherichia coli failed to inhibit papain in vitro suggesting that the T. spiralis protein is a new member of the non-inhibitory cystatin-related proteins. MCD-1 secreted from T. spiralis exists as high- and low-molecular weight isoforms and we show that a recombinant MCD-1 protein secreted by HeLa cells undergoes pH-dependent processing that may result in the release of individual cystatin-like domains. Furthermore, we found that mcd-1 gene expression is largely restricted to intracellular stages with the highest levels of expression in the adult worms. It is likely that the major role of the protein is during the intestinal stage of T. spiralis infections.
Resumo:
Aims: Myocardial ischemia/reperfusion (I/R) is associated with mitochondrial dysfunction and subsequent cardiomyocyte death. The generation of excessive quantities of reactive oxygen species (ROS) and resultant damage to mitochondrial enzymes is considered an important mechanism underlying reperfusion injury. Mitochondrial complex I can exist in two interconvertible states: active (A) and deactive or dormant (D). We have studied the active/deactive (A/D) equilibrium in several tissues under ischemic conditions in vivo and investigated the sensitivity of both forms of the heart enzyme to ROS.
Results: We found that in the heart, t½ of complex I deactivation during ischemia was 10?min, and that reperfusion resulted in the return of A/D equilibrium to its initial level. The rate of superoxide generation by complex I was higher in ischemic samples where content of the D-form was higher. Only the D-form was susceptible to inhibition by H2O2 or superoxide, whereas turnover-dependent activation of the enzyme resulted in formation of the A-form, which was much less sensitive to ROS. The mitochondrial-encoded subunit ND3, most likely responsible for the sensitivity of the D-form to ROS, was identified by redox difference gel electrophoresis.
Innovation: A combined in vivo and biochemical approach suggests that sensitivity of the mitochondrial system to ROS during myocardial I/R can be significantly affected by the conformational state of complex I, which may therefore represent a new therapeutic target in this setting.
Conclusion: The presented data suggest that transition of complex I into the D-form in the absence of oxygen may represent a key event in promoting cardiac injury during I/R.
Resumo:
Nontypable Haemophilus influenzae (NTHi) is a Gram-negative, non-capsulated human bacterial pathogen, a major cause of a repertoire of respiratory infections, and intimately associated with persistent lung bacterial colonization in patients suffering from chronic obstructive pulmonary disease (COPD). Despite its medical relevance, relatively little is known about its mechanisms of pathogenicity. In this study, we found that NTHi invades the airway epithelium by a distinct mechanism, requiring microtubule assembly, lipid rafts integrity, and activation of phosphatidylinositol 3-kinase (PI3K) signalling. We found that the majority of intracellular bacteria are located inside an acidic subcellular compartment, in a metabolically active and non-proliferative state. This NTHi-containing vacuole (NTHi-CV) is endowed with late endosome features, co-localizing with LysoTracker, lamp-1, lamp-2, CD63 and Rab7. The NTHi-CV does not acquire Golgi- or autophagy-related markers. These observations were extended to immortalized and primary human airway epithelial cells. By using NTHi clinical isolates expressing different amounts of phosphocholine (PCho), a major modification of NTHi lipooligosaccharide, on their surfaces, and an isogenic lic1BC mutant strain lacking PCho, we showed that PCho is not responsible for NTHi intracellular location. In sum, this study indicates that NTHi can survive inside airway epithelial cells.
Resumo:
Oxidized and/or glycated low-density lipoprotein (LDL) may mediate capillary injury in diabetic retinopathy. The mechanisms may involve pro-inflammatory and pro-oxidant effects on retinal capillary pericytes. In this study, these effects, and the protective effects of pigment epithelium-derived factor (PEDF), were defined in a primary human pericyte model. Human retinal pericytes were exposed to 100 microg/ml native LDL (N-LDL) or heavily oxidized glycated LDL (HOG-LDL) with or without PEDF at 10-160 nM for 24 h. To assess pro-inflammatory effects, monocyte chemoattractant protein-1 (MCP-1) secretion was measured by ELISA, and nuclear factor-kappaB (NF-kappaB) activation was detected by immunocytochemistry. Oxidative stress was determined by measuring intracellular reactive oxygen species (ROS), peroxynitrite (ONOO(-)) formation, inducible nitric oxide synthase (iNOS) expression, and nitric oxide (NO) production. The results showed that MCP-1 was significantly increased by HOG-LDL, and the effect was attenuated by PEDF in a dose-dependent manner. PEDF also attenuated the HOG-LDL-induced NF-kappaB activation, suggesting that the inhibitory effect of PEDF on MCP-1 was at least partially through the blockade of NF-kappaB activation. Further studies demonstrated that HOG-LDL, but not N-LDL, significantly increased ONOO(-) formation, NO production, and iNOS expression. These changes were also alleviated by PEDF. Moreover, PEDF significantly ameliorated HOG-LDL-induced ROS generation through up-regulation of superoxide dismutase 1 expression. Taken together, these results demonstrate pro-inflammatory and pro-oxidant effects of HOG-LDL on retinal pericytes, which were effectively ameliorated by PEDF. Suppressing MCP-1 production and thus inhibiting macrophage recruitment may represent a new mechanism for the salutary effect of PEDF in diabetic retinopathy and warrants more studies in future.
Resumo:
Oxidation and glycation of low-density lipoprotein (LDL) promote vascular injury in diabetes; however, the mechanisms underlying this effect remain poorly defined. The present study was conducted to determine the effects of 'heavily oxidized' glycated LDL (HOG-LDL) on endothelial nitric oxide synthase (eNOS) function. Exposure of bovine aortic endothelial cells with HOG-LDL reduced eNOS protein levels in a concentration- and time-dependent manner, without altering eNOS mRNA levels. Reduced eNOS protein levels were accompanied by an increase in intracellular Ca(2+), augmented production of reactive oxygen species (ROS) and induction of Ca(2+)-dependent calpain activity. Neither eNOS reduction nor any of these other effects were observed in cells exposed to native LDL. Reduction of intracellular Ca(2+) levels abolished eNOS reduction by HOG-LDL, as did pharmacological or genetic through calcium channel blockers or calcium chelator BAPTA or inhibition of NAD(P)H oxidase (with apocynin) or inhibition of calpain (calpain 1-specific siRNA). Consistent with these results, HOG-LDL impaired acetylcholine-induced endothelium-dependent vasorelaxation of isolated mouse aortas, and pharmacological inhibition of calpain prevented this effect. HOG-LDL may impair endothelial function by inducing calpain-mediated eNOS degradation in a ROS- and Ca(2+)-dependent manner.
Resumo:
PURPOSE: The authors investigated the receptor-mediated endocytosis (RME) and intracellular trafficking of insulin and low-density lipoprotein (LDL) in cultured retinal vascular endothelial cells (RVECs). METHODS: Low-density lipoprotein and insulin were conjugated to 10 nm colloidal gold, and these ligands were added to cultured bovine RVECs for 20 minutes at 4 degrees C. The cultures were then warmed to 37 degrees C and fixed after incubation times between 30 seconds and 1 hour. Control cells were incubated with unconjugated gold colloid at times and concentrations similar to those of the ligands. Additional control cells were exposed to several concentrations of anti-insulin receptor antibody or a saturating solution of unconjugated insulin before incubation with gold insulin. RESULTS: Using transmission electron microscopy, insulin gold and LDL gold were both observed at various stages of RME. Insulin-gold particles were first seen to bind to the apical plasma membrane (PM) before clustering in clathrin-coated pits and internalization in coated vesicles. Gold was later visualized in uncoated cytoplasmic vesicles, corresponding to early endosomes and multivesicular bodies (MVBs) or late endosomes. In several instances, localized regions of the limiting membrane of the MVBs appeared coated, a feature of endosomal membranes not previously described. After RME at the apical PM and passage through the endosomal system, the greater part of both insulin- and LDL-gold conjugates was seen to accumulate in large lysosome-like compartments. However, a small but significant proportion of the internalized ligands was transcytosed and released as discrete membrane-associated quanta at the basal cell surface. The uptake of LDL gold was greatly increased in highly vacuolated, late-passage RVECs. In controls, anti-insulin receptor antibody and excess unconjugated insulin caused up to 89% inhibition in gold-insulin binding and internalization. CONCLUSION: These results illustrate the internalization and intracellular trafficking by RVECs of insulin and LDL through highly efficient RME, and they provide evidence for at least two possible fates for the endocytosed ligands. This study outlines a route by which vital macromolecules may cross the inner blood-retinal barrier.
Resumo:
Monoclonal antibodies have been prepared against purified pachytene cells from grasshopper testes. Immunoblotting and immunofluorescence analyses identified those monoclonal antibodies which showed specificity for antigens in pachytene cells. Several antigenic changes were found to be associated with meiotic cells. Five monoclonal antibodies detected antigens which were located in the cytoplasm of premeiotic cells but were nuclear during meiosis. One monoclonal antibody showed a discrete cytoplasmic fluorescent pattern in meiotic, but not in premeiotic, cells. Another bound specifically to the nuclei of some epithelial cells at the base of follicles in mature testes.
Resumo:
A highly sensitive broad specificity monoclonal antibody was produced and characterised for microcystin detection through the development of a rapid surface plasmon resonance (SPR) optical biosensor based immunoassay. The antibody displayed the following cross-reactivity: MC-LR 100%; MC-RR 108%; MC-YR 68%; MC-LA 69%; MC-LW 71%; MC-LF 68%; and Nodularin 94%. Microcystin-LR was covalently attached to a CM5 chip and with the monoclonal antibody was employed in a competitive 4min injection assay to detect total microcystins in water samples below the WHO recommended limit (1µg/L). A 'total microcystin' level was determined by measuring free and intracellular concentrations in cyanobacterial culture samples as this toxin is an endotoxin. Glass bead beating was used to lyse the cells as a rapid extraction procedure. This method was validated according to European Commission Decision 96/23/EC criteria. The method was proven to measure intracellular microcystin levels, the main source of the toxin, which often goes undetected by other analytical procedures and is advantageous in that it can be used for the monitoring of blooms to provide an early warning of toxicity. It was shown to be repeatable and reproducible, with recoveries from spiked samples ranging from 74 to 123%, and had % CVs below 10% for intra-assay analysis and 15% for inter-assay analysis. The detection capability of the assay was calculated as 0.5ng/mL for extracellular toxins and 0.05ng/mL for intracellular microcystins. A comparison of the SPR method with LC-MS/MS was achieved by testing six Microcystis aeruginosa cultures and this study yielded a correlation R(2) value of 0.9989.
Resumo:
The insect pathogen Beauveria bassiana, Metarhizium anisopliae and Paecilomyces farinosos can be effective biocontrol agents when relative humidity (RH) is close to 100%. At reduced water availability, germination of propagules, and therefore host infection, cannot occur. Cultures of B. bassiana, M. anisopliae and P. farinosus were grown under different conditions to obtain conidia with a modified polyol and trehalose content. Conidia with higher intracellular concentrations of glycerol and erythritol germinated both more quickly and at lower water activity (a(w)) than those from other treatments. In contrast, conidia containing up to 235.7 mg trehalose g-1 germinated significantly (P < 0 05) more slowly than those with an equivalent polyol content but less trehalose, regardless of water availability. Conidia from control treatments did not germinate below 0.951 - 0.935 a(w) (≡ 95.1 - 93.5% RH). In contrast, conidia containing up to 164.6 mg glycerol plus erythritol g-1 germinated down to 0.887 a(w) (≡ 88.7% RH). These conidia germinated below the water availability at which mycelial growth ceases (0.930 - 0.920 a(w)). Germ tube extension rates reflected the percentage germination of conidia, so the most rapid germ tube growth occurred after treatments which produced conidia containing the most glycerol and erythritol. This study shows for the first time that manipulating polyol content can extend the range of water availability over which fungal propagules can germinate. Physiological manipulation of conidia may improve biological control of insect pests in the field.