102 resultados para insulin receptor substrate proteins


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Previously we have shown that expression of the deubiquitinating enzyme USP17 is required for cell proliferation and motility. More recently we reported that USP17 deubiquitinates RCE1 isoform 2 and thus regulates the processing of 'CaaX' motif proteins. Here we now show that USP17 expression is induced by epidermal growth factor and that USP17 expression is required for clathrin mediated endocytosis of epidermal growth factor receptor. In addition, we show that USP17 is required for the endocytosis of transferrin, an archetypal substrate for clathrin mediated endocytosis, and that USP17 depletion impedes plasma membrane recruitment of the machinery required for clathrin mediated endocytosis. Thus, our data reveal that USP17 is necessary for epidermal growth factor receptor and transferrin endocytosis via clathrin coated pits, indicate this is mediated via the regulation of the recruitment of the components of the endocytosis machinery and suggest USP17 may play a general role in receptor endocytosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

AIMS: Adult granulosa cell tumours (AGCTs) are uncommon ovarian sex cord-stromal tumours which recur following surgical removal in up to 50% of patients. Treatment options for recurrent and advanced stage AGCTs are limited, with poor response to chemotherapy and radiotherapy. We aimed to assess epidermal growth factor receptor (EGFR), HER2 and insulin-like growth factor-1 receptor (IGF-1R) status in AGCTs with a view to investigating whether or not these receptors might be potential therapeutic targets in these neoplasms.

METHODS AND RESULTS: Immunohistochemical staining for EGFR, HER2 and IGF-1R was undertaken in 31 AGCTs. Tumour DNA was also analysed for mutations in the tyrosine kinase domain of EGFR (exons 18-21) by Cobas mutation RT-PCR. Twenty-three of 31 (74%) AGCTs showed some degree of EGFR expression, generally with cytoplasmic or mixed membranous and cytoplasmic staining of variable intensity. Eleven of 27 (41%) cases exhibited strong membranous and cytoplasmic expression of IGF-1R. HER2 expression was not seen. No mutations were found in exons 18-21 of the EGFR gene in hot-spots of therapeutic relevance.

CONCLUSIONS: This study raises the possibility that anti-EGFR and/or anti-IGF-1R therapies may be of potential benefit in ovarian AGCTs, and this requires further study. Lack of known mutations within the tyrosine kinase domain of EGFR suggests that EGFR-related tyrosine kinase inhibitors may not be useful therapeutically.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Prostate cancer is the second most common cause of cancer-associated deaths in men and signalling via a transcription factor called androgen receptor (AR) is an important driver of the disease. Androgen treatment is known to affect the expression and activity of other oncogenes including receptor tyrosine kinases (RTKs). In this study we report that AR-positive prostate cancer cell-lines express 50% higher levels of enzymes in the hexosamine biosynthesis pathway (HBP) than AR-negative prostate cell-lines. HBP produces hexosamines that are used by endoplasmic reticulum and golgi enzymes to glycosylate proteins targeted to plasma-membrane and secretion. Inhibition of O-linked glycosylation by ST045849 or N-linked glycosylation with tunicamycin decreased cell viability by 20%. In addition, tunicamycin inhibited the androgen-induced expression of AR target genes KLK3 and CaMKK2 by 50%. RTKs have been shown to enhance AR activity and we used an antibody array to identify changes in the phosphorylation status of RTKs in response to androgen stimulation. Hormone treatment increased the activity of Insulin like Growth Factor 1-Receptor (IGF-1R) ten-fold and this was associated with a concomitant increase in the N-linked glycosylation of the receptor, analyzed by lectin enrichment experiments. Glycosylation is known to be important for the processing and stability of RTKs. Inhibition of N-linked glycosylation resulted in accumulation of IGF-1R pro-receptor with altered mobility as shown by immunoprecipitation. Confocal imaging revealed that androgen induced plasma-membrane localization of IGF-1R was blocked by tunicamycin. In conclusion we have established that the glycosylation of IGF-1R is necessary for the full activation of the receptor in response to androgen treatment and that perturbing this process can break the feedback loop between AR and IGF-1R activation in prostate cells. Achieving similar results selectively in a clinical setting will be an important challenge in the future.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) is a prominent substrate for activated tyrosine kinase receptors that has been proposed to play a role in endosomal membrane trafficking. The protein contains a FYVE domain, which specifically binds to the lipid phosphatidylinositol (PI) 3-phosphate (PI 3-P). We show that this interaction is required both for correct localization of the protein to endosomes that only partially coincides with early endosomal autoantigen 1 and for efficient tyrosine phosphorylation of the protein in response to epidermal growth factor stimulation. Treatment with wortmannin reveals that Hrs phosphorylation also requires PI 3-kinase activity, which is necessary to generate the PI 3-P required for localization. We have used both hypertonic media and expression of a dominant-negative form of dynamin (K44A) to inhibit endocytosis; under which conditions, receptor stimulation fails to elicit phosphorylation of Hrs. Our results provide a clear example of the coupling of a signal transduction pathway to endocytosis, from which we propose that activated receptor (or associated factor) must be delivered to the appropriate endocytic compartment in order for Hrs phosphorylation to occur.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Metabolic alterations have been identified as a frequent event in cancer. This is often associated with increased flux through glycolysis, and also a secondary pathway to glycolysis, hexosamine biosynthetic pathway (HBP). HBP provides substrate for N-linked glycosylation, which occurs in the endoplasmic reticulum and the Golgi apparatus. N-linked glycosylation supports protein folding and correct sorting of proteins to plasma membrane and secretion. This process generates complex glycoforms, which can be recognized by other proteins and glycosylation of receptor tyrosine kinases (RTK) can also regulate their plasma-membrane retention time. Of special interest for experimental biologists, plants produce proteins, termed lectins, which bind with high specificity to glyco-conjugates. For the purposes of molecular biology, plant lectins can be conjugated to different moieties, such as agarose beads, which enable precipitation of specifically glycosylated proteins. In this chapter, we describe in detail how to perform pull-down experiments with commercially available lectins to identify changes in the glycosylation of RTKs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: This study examined the biological effects of the GIP receptor antagonist, (Pro3)GIP and the GLP-1 receptor antagonist, exendin(9-39)amide.

METHODS: Cyclic AMP production was assessed in Chinese hamster lung fibroblasts transfected with human GIP or GLP-1 receptors, respectively. In vitro insulin release studies were assessed in BRIN-BD11 cells while in vivo insulinotropic and glycaemic responses were measured in obese diabetic ( ob/ ob) mice.

RESULTS: In GIP receptor-transfected fibroblasts, (Pro(3))GIP or exendin(9-39)amide inhibited GIP-stimulated cyclic AMP production with maximal inhibition of 70.0+/-3.5% and 73.5+/-3.2% at 10(-6) mol/l, respectively. In GLP-1 receptor-transfected fibroblasts, exendin(9-39)amide inhibited GLP-1-stimulated cyclic AMP production with maximal inhibition of 60+/-0.7% at 10(-6) mol/l, whereas (Pro(3))GIP had no effect. (Pro(3))GIP specifically inhibited GIP-stimulated insulin release (86%; p<0.001) from clonal BRIN-BD11 cells, but had no effect on GLP-1-stimulated insulin release. In contrast, exendin(9-39)amide inhibited both GIP and GLP-1-stimulated insulin release (57% and 44%, respectively; p<0.001). Administration of (Pro(3))GIP, exendin(9-39)amide or a combination of both peptides (25 nmol/kg body weight, i.p.) to fasted (ob/ob) mice decreased the plasma insulin responses by 42%, 54% and 49%, respectively (p<0.01 to p<0.001). The hyperinsulinaemia of non-fasted (ob/ob) mice was decreased by 19%, 27% and 18% (p<0.05 to p<0.01) by injection of (Pro3)GIP, exendin(9-39)amide or combined peptides but accompanying changes of plasma glucose were small.

CONCLUSIONS/INTERPRETATION: These data show that (Pro(3))GIP is a specific GIP receptor antagonist. Furthermore, feeding studies in one commonly used animal model of obesity and diabetes, (ob/ob) mice, suggest that GIP is the major physiological component of the enteroinsular axis, contributing approximately 80% to incretin-induced insulin release.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To quantitatively measure VIP levels and to qualitatively study the distribution of VIP fibres and demonstrate the presence of the VPAC1 receptor in human dental pulp from carious and non-carious adult human teeth. Design: Dental pulp samples were collected from non-carious, moderately carious and grossly carious adult human teeth. VIP levels were determined using radioimmunoassay. The distribution of VIP fibres was studied using immunohistochemistry. The VPAC1 receptor protein expression was determined by Western blotting. Results: VIP levels were found to be significantly elevated in the dental pulp of moderately carious compared with non-carious (p = 0.0032) or grossly carious teeth (p = 0.0029). The distribution of VIP fibres was similar in non-carious and carious teeth, except that nerve bundles appeared thicker in the pulp samples from carious compared with non-carious teeth. Western blotting indicated that the VPAC1 receptor proteins were detected in similar levels in pooled dental pulp samples from both carious and non-carious teeth. Conclusion: It is concluded that quantitative changes in the levels of VIP in human dental pulp during the caries process and the expression of VPAC1 receptor proteins in membrane extracts from carious and non-carious teeth suggests a role for VIP in modulating pulpal health and disease. © 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Estrogen acutely activates endothelial nitric oxide synthase (eNOS). However, the identity of the receptors involved in this rapid response remains unclear. Methods and Results We detected an estrogen receptor (ER) transcript in human endothelial cells that encodes a truncated 46-kDa ER (1a-hER-46). A corresponding 46-kDa ER protein was identified in endothelial cell lysates. Transfection of cDNAs encoding the full-length ER (ER-66) and 1a-hER-46 resulted in appropriately sized recombinant proteins identified by anti-ER antibodies. Confocal microscopy revealed that a proportion of both ER-66 and hER-46 was localized outside the nucleus and mediated specific cell-surface binding of estrogen as assessed by FITC-conjugated, BSA-estrogen binding studies. Both ER isoforms colocalized with eNOS and mediated acute activation of eNOS in response to estrogen stimulation. However, estrogen-stimulated transcriptional activation mediated by 1a-hER-46 was much less than with ER-66. Furthermore, 1a-hER-46 inhibited classical hER-66 mediated transcriptional activation in a dominant-negative fashion. Conclusions These findings suggest that expression of an alternatively spliced, truncated ER isoform in human endothelial cells confers a unique ability to mediate acute but not transcriptional responses to estrogen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adrenomedullin (AM) and intermedin (IMD; adrenomedulln-2) are vasodilator peptides related to calcitonin gene-related peptide (CGRP). The actions of these peptides are mediated by the calcitonin receptor-like receptor (CLR) in association with one of three receptor activity-modifying proteins. CGRP is selective for CLR/receptor activity modifying protein (RAMP)1, AM for CLR/RAMP2 and -3, and IMD acts at both CGRP and AM receptors. In a model of pressure overload induced by inhibition of nitric-oxide synthase, up-regulation of AM was observed previously in cardiomyocytes demonstrating a hypertrophic phenotype. The current objective was to examine the effects of blood pressure reduction on cardiomyocyte expression of AM and IMD and their receptor components. Nomega-nitro-L-arginine methyl ester (L-NAME) (35 mg/kg/day) was administered to rats for 8 weeks, with or without concurrent administration of hydralazine (50 mg/kg/day) and hydrochlorothiazide (7.5 mg/kg/day). In left ventricular cardiomyocytes from L-NAME-treated rats, increases (-fold) in mRNA expression were 1.6 (preproAM), 8.4 (preproIMD), 3.4 (CLR), 4.1 (RAMP1), 2.8 (RAMP2), and 4.4 (RAMP3). Hydralazine/hydrochlorothiazide normalized systolic blood pressure (BP) and abolished mRNA up-regulation of hypertrophic markers sk-alpha-actin and BNP and of preproAM, CLR, RAMP2, and RAMP3 but did not normalize cardiomyocyte width nor preproIMD or RAMP1 mRNA expression. The robust increase in IMD expression indicates an important role for this peptide in the cardiac pathology of this model but, unlike AM, IMD is not associated with pressure overload upon the myocardium. The concordance of IMD and RAMP1 up-regulation indicates a CGRP-type receptor action; considering also a lack of response to BP reduction, IMD may, like CGRP, have an anti-ischemic function.