95 resultados para hydrogenation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemoenzymatic synthesis of a Lewis basic phosphine-phosphine oxide organocatalyst from a cis-dihydrodiol metabolite of bromobenzene proceeds via a palladium-catalysed carbon-phosphorus bond coupling and a novel room temperature Arbuzov [2,3]-sigmatropic rearrangement of an allylic diphenylphosphinite. Allylation of aromatic aldehydes were catalysed by the Lewis basic organocatalyst giving homoallylic alcohols in up to 57% ee. This compound also functioned as a ligand for rhodium-catalysed asymmetric hydrogenation of acetamidoacrylate giving reduction products with ee values of up to 84%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In liquid-phase reaction systems, the role of the solvent is often limited to the simple requirement of dissolving and/or diluting substrates. However, the correct choice, either pure or mixed, can significantly influence both reaction rate and selectivity. For multi-phase heterogeneously catalysed reactions observed variations may be due to changes in mass transfer rates, reaction mechanism, reaction kinetics, adsorption properties and combinations thereof. The liquid-phase hydrogenation of 2-butanone to 2-butanol over a Ru/SiO catalyst, for example, shows such complex rate behaviour when varying water/isopropyl alcohol (IPA) solvent ratios. In this paper, we outline a strategy which combines measured rate data with physical property measurements and molecular simulation in order to gain a more fundamental understanding of mixed solvent effects for this heterogeneously catalysed reaction. By combining these techniques, the observed complex behaviour of rate against water fraction is shown to be a combination of both mass transfer and chemical effects. © 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selective hydrogenation of ,-unsaturated aldehydes and ketones has been studied using ketoisophorone and cinnamaldehyde as model substrates using manganese oxide octahedral molecular sieve (OMS-2) based catalysts. For the first time, OMS-2 has been shown to be an efficient and selective hydrogenation catalyst. High selectivities for either the CC or CO double bond at approximate to 100% conversion were achieved by using OMS-2 and platinum supported on OMS-2 catalysts. Density functional theory (DFT) calculations showed that the dissociation of H2 on OMS-2 was water assisted and occurred on the surface Mn of OMS-2(001) that had been modified by an adsorbed H2O molecule. The theoretically calculated activation barrier was in good agreement with the experimentally determined value for the hydrogenation reactions, indicating that H2 dissociation on OMS-2 is likely to be the rate-determining step. A significant increase in the rate of reaction was observed in the presence of Pt as a result of the enhancement of H2 dissociative adsorption and subsequent reaction on the Pt or spillover of the hydrogen to the OMS-2 support. The relative adsorption strengths of ketoisophorone and cinnamaldehyde on the OMS-2 support compared with the Pt were found to determine the product selectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable chromium, molybdenum, tungsten, manganese, rhenium, ruthenium, osmium, cobalt, rhodium, and iridium metal nanoparticles (MNPs) have been reproducibly obtained by facile, rapid (3 min), and energysaving 10 W microwave irradiation (MWI) under an argon atmosphere from their metal–carbonyl precursors [Mx(CO)y] in the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]). This MWI synthesis is compared to UV-photolytic (1000 W, 15 min) or conventional thermal decomposition (180–2508C, 6–12 h) of [Mx(CO)y] in ILs. The MWIobtained nanoparticles have a very small (<5 nm) and uniform size and are prepared without any additional stabilizers or capping molecules as long-term stable M-NP/IL dispersions (characterization by transmission electron microscopy (TEM), transmission electron diffraction (TED), and dynamic light scattering (DLS)). The ruthenium, rhodium, or iridium nanoparticle/IL dispersions are highly active
and easily recyclable catalysts for the biphasic liquid–liquid hydrogenation of cyclohexene to cyclohexane with activities of up to 522 (mol product)(mol Ru)1h1 and 884 (mol product)(molRh)1h1 and give almost quantitative conversion within 2 h at 10 bar H2 and 908C. Catalyst poisoning experiments with CS2 (0.05 equiv per Ru) suggest a heterogeneous surface catalysis of RuNPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chiral supported ionic liquid phase (CSILP) catalysts were prepared by physical adsorption (within highly porous carbons or mesoporous silica) of Ir, Ru and Rh complexes as IrCl(COD)-(S, S)-BDPP, [IrCl-(S)-BINAP](2), RuCl(p-cymene)[(S, S)-Ts-DPEN], RuOTf(p-cymene)[(S, S)-Ts-DPEN], [Rh(COD)(S, S)-DIPAMP][BF4], and [Rh(COD)(R, R)-Me-DuPHOS][BF4]. For the syntheses of CSILP catalysts [EMIM][NTf2], [BMIM][BF4] and [BMIM][PF6] ionic liquids were used. Comparative homogeneous and heterogeneous experiments were carried out using the asymmetric hydrogenation of double -C N- and -C C- bonds in trimethylindolenine, 2-methylquinoline and dimethylitaconate, respectively. The conversion and enantioselectivity was found to depend on the nature of the complex (metal and ligand), the immobilization method used, nature of the ionic liquid, nature of the support and the experimental conditions. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activity and selectivity are both important issues in heterogeneous catalysis and recent experimental results have shown that Ni catalysts doped by gold exhibit high activity for the hydrogenation of acetylene with good selectivity of ethylene formation. To unravel the underlying mechanism for this observation, the general trend of activity and selectivity of Ni surfaces doped by Au, Ag, and Cu has been investigated using density functional theory calculations. Complete energy profiles from C2H2 to C2H4 on Ni(111), Au/Ni(111), Ag/Ni(111) and Cu/Ni(111) are obtained and their turnover frequencies (TOFs) are computed. The results show that acetylene adsorption on Ni catalyst is strong which leads to the low activity while the doping of Au, Ag, and Cu on the Ni catalyst weakens the acetylene adsorption, giving rise to the increase of activity. The selectivity of ethylene formation is also quantified by using the energy difference between the hydrogenation barriers and the absolute value of the adsorption energies of ethylene. It is found that the selectivity of ethylene formation increases by doping Au and Ag, while those of Cu/Ni and Ni are similar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the first time, the hydrogenation/hydrogenolysis of a range of disulfides has been achieved over a supported palladium catalyst using hydrogen under relatively benign conditions. These unexpected results demonstrate that it is possible to avoid the poisoning of the catalyst by either the nitrogen-containing groups or the sulfur species, allowing both efficient reaction and recycling of the catalyst under the proper conditions (e.g., at low temperatures). A slight loss in activity was found on recycling; however, the catalyst activity can be recovered using hydrogen pretreatment. The reaction mechanism for the hydrogenolysis and hydrogenation of ortho-, meta-, and para-dinitrodiphenyldisulfide to the corresponding aminothiophenol has been elucidated. Density functional theory calculations were used to investigate the adsorption mode of the dinitrodiphenyldisulfides; a clear dependence on adsorption geometry was found regarding whether the molecule is cleaved at the S-S bond before the reduction of the nitro group or vice versa. This study demonstrates the versatility of these catalysts for the hydrogenation/hydrogenolysis of sulfur-containing molecules, which normally are considered poisons, and will extend their use to a new family of substrates. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Green oil, which leads to the deactivation of the catalysts used for the selective hydrogenation of acetylene, has long been observed but its formation mechanism is not fully understood. In this work, the formation of 1,3-butadiene, known to be the precursor of green oil, on both Pd(111) and Pd(211) surfaces is examined using density functional theory calculations. The pathways containing C-2 + C-2 coupling reactions as well as the corresponding hydrogenation reactions are studied in detail. Three pathways for 1,3-butadiene production, namely coupling plus hydrogenation and further hydrogenation, hydrogenation plus coupling plus hydrogenation, and a two step hydrogenation followed by coupling, are determined. By comparing the effective barriers, we identify the favored pathway on both surfaces. A general understanding toward the deactivation process of the industrial catalysts is also provided. In addition, the effects of the formation of subsurface carbon atoms as well as the Ag alloying on the 1,3-butadiene formation on Pd-based catalysts are also investigated and compared with experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selective hydrogenation of acetylene to ethylene on several Pd surfaces (Pd(111), Pd(100), Pd(211), and Pd(211)-defect) and Pd surfaces with subsurface species (carbon and hydrogen) as well as a number of Pd-based alloys (Pd-M/Pd(111) and Pd-M/Pd(211) (M = Cu, Ag and Au)) are investigated using density functional theory calculations to understand both the acetylene hydrogenation activity and the selectivity of ethylene formation. All the hydrogenation barriers are calculated, and the reaction rates on these surfaces are obtained using a two-step model. Pd(211) is found to have the highest activity for acetylene hydrogenation while Pd(100) gives rise to the lowest activity. In addition, more open surfaces result in over-hydrogenation to form ethane, while the close-packed surface (Pd(111)) is the most selective. However, we also find that the presence of subsurface carbon and hydrogen significantly changes the reactivity and selectivity of acetylene toward hydrogenation on Pd surfaces. On forming surface alloys of Pd with Cu, Ag and Au, the selectivity for ethylene is also found to be changed. A new energy decomposition method is used to quantitatively analyze the factors in determining the changes in selectivity. These surface modifiers are found to block low coordination unselective sites, leading to a decreased ethane production. (C) 2013 The Authors. Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boron-modified Pd catalysts have shown excellent performance for the selective hydrogenation of alkynes experimentally. In the current work, we investigated the hydrogenation of acetylene on boron-modified Pd(111) and Pd(211) surfaces, utilizing density functional theory calculations. The activity of acetylene hydrogenation has been studied by estimating the effective barrier of the whole process. The selectivity of ethylene formation is investigated from a comparison between the desorption and the hydrogenation of ethylene as well as comparison between the ethylene and the 1,3-butadiene formation. Formation of subsurface carbon and hydrogen on both boron-modified Pd(111) and Pd(211) surfaces has also been evaluated, since these have been reported to affect both the activity and the selectivity of acetylene hydrogenation to produce ethylene on Pd surfaces. Our results provide some important insights into the Pd B catalysts for selective hydrogenation of acetylene and also for more complex hydrogenation systems, such as stereoselective hydrogenation of longer chain alkynes and selective hydrogenation of vegetable oil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Image

A new experimental procedure based on attenuated total reflection infrared spectroscopy has been developed to investigate surface species under liquid phase reaction conditions. The technique has been tested by investigating the enhanced selectivity in the hydrogenation of α,β-unsaturated aldehyde citral over a 5% Pt/SiO2 catalyst toward unsaturated alcohols geraniol/nerol, which occurs when citronellal is added to the reaction. The change in selectivity is proposed to be the result of a change in the citral adsorption mode in the presence of citronellal. Short time on stream attenuated total internal reflection infrared spectroscopy has allowed identification of the adsorption modes of citral. With no citronellal, citral adsorbs through both the C═C and C═O groups; however, in the presence of citronellal, citral adsorption occurs through the C═O group only, which is proposed to be the cause of the altered reaction selectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Horiuti-Polanyi mechanism has been considered to be universal for explaining the mechanisms of hydrogenation reactions in heterogeneous catalysis for several decades. In this work, we examine this mechanism for the hydrogenation of acrolein, the simplest alpha,beta-unsaturated aldehyde, in gold-based systems as well as some other metals using extensive first-principles calculations. It is found that a non-Horiuti-Polanyi mechanism is favored in some cases. Furthermore, the physical origin and trend of this mechanism are revealed and discussed regarding the geometrical and electronic effects, which will have a significant influence on current understandings on heterogeneous catalytic hydrogenation reactions and the future catalyst design for these reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Partial hydrogenation of acrolein, the simplest alpha, beta-unsaturated aldehyde, is not only a model system to understand the selectivity in heterogeneous catalysis, but also technologically an important reaction. In this work, the reaction on Pt(211) and Au(211) surfaces is thoroughly investigated using density functional theory calculations. The formation routes of three partial hydrogenation products, namely propenol, propanal and enol, on both metals are studied. It is found that the pathway to produce enol is kinetically favoured on Pt while on Au the route of forming propenol is preferred. Our calculations also show that the propanal formation follows an indirect pathway on Pt(211). An energy decomposition method to analyze the barrier is utilized to understand the selectivities at Pt(211) and Au(211), which reveals that the interaction energies between the reactants involved in the transition states play a key role in determining the selectivity difference.