63 resultados para hydrogel
Resumo:
The synthesis, complexation, and photophysical properties of the Eu(III)-based quinoline cyclen conjugate complex Eu1 and its permanent, noncovalent incorporation into hydrogels as sensitive, interference-free pH sensing materials for biological media are described. The Eu(III) emission in both solution and hydrogel media was switched reversibly on-off as a function of pH with a large, greater than order of magnitude enhancement in Eu(III) emission. The irreversible incorporation of Eu1 into water-permeable hydrogels was achieved using poly[methyl methacrylate-co-2-hydroxyethyl methacrylate]- based hydrogels, and the luminescent properties of the novel sensor materials, using confocal laser- scanning microscopy and steady state luminescence, were characterized and demonstrated to be retained with respect to solution behavior. Water uptake and dehydration behavior of the sensor-incorporated materials was also characterized and shown to be dependent on the material composition.
Resumo:
Novel surface-modified hydrogel materials have been prepared by binding charged porphyrins TMPyP (tetrakis-(4-N-methylpyridyl)porphyrin) and TPPS (tetrakis(4-sulfonatophenyl)porphyrin) to copolymers of HEMA (2-hydroxyethyl methacrylate) with either MAA (methacrylic acid) or DEAEMA (2-(diethylamino)ethylmethacrylate). The charged hydrogels display strong electrostatic interactions with the appropriate cationic or anionic porphyrins to give materials which are intended to be used to generate cytotoxic singlet oxygen (1O2) on photoexcitation and can therefore be used to reduce postoperative infection of the intraocular hydrogel-based replacement lenses that are used in cataract surgery. The UV/vis spectra of TMPyP in MAA:HEMA copolymers showed a small shift in the Soret band and a change from single exponential (161 Ã?�Ã?Âs) triplet decay lifetime in solution to a decay that could be fitted to a biexponential fit with two approximately equal components with Ã?�Ã?´ ) 350 and 1300 Ã?�Ã?Âs. O2 bubbling reduced the decay to a dominant (90%) component with a much reduced lifetime of 3 Ã?�Ã?Âs and a minor, longer lived (20 Ã?�Ã?Âs) component. With D2O solvent the 1O2 lifetime was measured by 1270 nm fluorescence as 35 Ã?�Ã?Âs in MAA:HEMA, compared to 67 Ã?�Ã?Âs in solution, although absorbance-matched samples showed similar yield of 1O2 in the polymers and in aqueous solution. In contrast to the minor perturbation in photophysical properties caused by binding TMPyP to MAA:HEMA, TPPS binding to DEAEMA:HEMA copolymers profoundly changed the 1O2 generating ability of the TPPS. In N2-bubbled samples, the polymer-bound TPPS behaved in a similar manner to TMPyP in its copolymer host; however, O2 bubbling had only a very small effect on the triplet lifetime and no 1O2 generation could be detected. The difference in behavior may be linked to differences in binding in the two systems. With TMPyP in MAA:HEMA, confocal fluorescence microscopy showed significant penetration of the porphyrin into the core of the polymer film samples (>150 Ã?�Ã?Âm). However, for TPPS in DEAEMA:HEMA copolymers, although the porphyrin bound much more readily to the polymer, it remained localized in the first 20 Ã?�Ã?Âm, even in heavily loaded samples. It is possible that the resulting high concentration of TPPS may have cross-linked the hydrogels to such an extent that it significantly reduced the solubility and/or diffusion rate of oxygen into the doped polymers. This effect is significant since it demonstrates that even simple electrostatic binding of charged porphyrins to hydrogels can have an unexpectedly large effect on the properties of the system as a whole. In this case it makes the apparently promising TPPS/DEAEMA:HEMA system a poor candidate for clinical application as a postoperative antibacterial treatment for intraocular lenses while the apparently equivalent cationic system TMPyP/MAA:HEMA displays all the required properties.
Resumo:
Bacterial attachment onto intraocular lenses (IOLs) during cataract extraction and IOL implantation is a prominent aetiological factor in the pathogenesis of infectious endophthalmitis. Photodynamic therapy (PDT) and photodynamic antimicrobial chemotherapy (PACT) have shown that photosensitizers are effective treatments for cancer, and in the photoinactivation of bacteria, viruses, fungi and parasites, in the presence of light. To date, no method of localizing the photocytotoxic effect of a photosensitizer at a biomaterial surface has been demonstrated. Here we show a method for concentrating this effect at a material surface to prevent bacterial colonization by attaching a porphyrin photosensitizer at, or near to, that surface, and demonstrate the principle using IOL biomaterials. Anionic hydrogel copolymers were shown to permanently bind a cationic porphyrin through electrostatic interactions as a thin surface layer. The mechanical and thermal properties of the materials showed that the porphyrin acts as a surface cross-linking agent, and renders surfaces more hydrophilic. Importantly, Staphylococcus epidermidis adherence was reduced by up to 99.0 ± 0.42% relative to the control in intense light conditions and 91.7± 5.99% in the dark. The ability to concentrate the photocytotoxic effect at a surface, together with a significant dark effect, provides a platform for a range of light-activated anti-infective biomaterial technologies.
Resumo:
A contact lens is a medical device widely used as an alternative to spectacles in order to correct refractive vision problems. The evolution of polymeric biomaterials has heralded a continuous development in the materials used to produce contact lenses and maximize patient comfort and limit adverse events. Microbial keratitis (MK) is a relatively rare but potentially devastating condition associated with contact lens use, particularly with the extended wear of hydrogel lenses. It is the principal complication related to contact lens wear and the large population at risk make it a public health concern. Bacterial binding to the contact lens material is a precursor to the development of MK and is influenced by properties of the material and the bacteria. In order for bacteria to infiltrate the cornea there must be some degree of corneal damage, usually caused by trauma or hypoxia. The most recent materials available aim to allow the continuous wear of lenses while limiting corneal hypoxia, thus helping to prevent the development of MK. Limitations to the treatment of MK require that novel approaches may be necessary in order to limit bacterial adhesion to contact lens materials.
Resumo:
Photodynamic therapy of deep or nodular skin tumours is currently limited by the poor tissue penetration of the porphyrin precursor 5-aminolevulinic acid (ALA) and preformed photosensitisers. In this study, we investigated the potential of jet injection to deliver both ALA and a preformed photosensitiser (meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate, TMP) into a defined volume of skin. Initial studies using a model hydrogel showed that as standoff distance is increased, injection depth decreases. As the ejected volume is increased, injection depth increases. It was also shown, for the first time, that, as injection solution viscosity was increased, for a given injection setting and standoff distance, both total depth of jet penetration, L-t, and depth at which the maximum width of the penetration pattern occurred, L-m, decreased progressively. For a standoff distance of zero, the maximum width of the penetration pattern, L-w, increased progressively with increasing viscosity at each of the injection settings. Conversely, when the standoff distance was 2.5 mm, L-w decreased progressively with increasing viscosity. Studies with neonate porcine skin revealed that an injection protocol comprising an 8.98 mPas solution, an arbitrary injection setting of 8 and a standoff distance of zero was capable of delivering photosensitisers to a volume of tissue (L-t of 2.91 mm, L-m of 2.14 mm, L-w of 5. 10 mm) comparable to that occupied by a typical nodular basal cell carcinoma. Both ALA and TMP were successfully delivered using jet injection, with peak tissue concentrations (67.3 mg cm(-3) and 5.6 mg cm(-3), respectively) achieved at a depth of around 1.0 mm and substantial reductions in drug concentration seen at depths below 3.0 mm. Consequently, jet injection may be suitable for selective targeting of ALA or preformed photosensitisers to skin tumours. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Antibiotics have been the cornerstone of the clinical management of bacterial infections since their discovery in the early part of the last century. Eight decades later, their widespread, often indiscriminate use, has resulted in an overall reduction in their effectiveness, with reports of multidrug-resistant bacteria now commonplace. Increasing reliance on indwelling medical devices, which are inherently susceptible to biofilm-mediated infections, has contributed to unacceptably high rates of nosocomial infections, placing a strain on healthcare budgets. This study investigates the use of lytic bacteriophages in the treatment and prevention of biofilms of bacterial species commonly associated with infections of indwelling urological devices and catheter-associated urinary tract infections. The use of lytic bacteriophages against established biofilms of Proteus mirabilis and Escherichia coli is described, whereby biofilm populations have been reduced successfully by three to four log cycles (99.9-99.99% removal). The prevention of biofilm formation on Foley catheter biomaterials following impregnation of hydrogel-coated catheter sections with a lytic bacteriophage has also been investigated. This has revealed an approximate 90% reduction in both P. mirabilis and E. coli biofilm formation on bacteriophage-treated catheters when compared with untreated controls.
Resumo:
he influence of poly(ethylene glycol) (PEG) plasticiser content and molecular weight on the physicochemical properties of films cast from aqueous blends of poly(methyl vinyl ether-co-maleic acid) was investigated using thermal analysis, swelling studies, scanning electron microscopy (SEM) and attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy. FTIR spectroscopy revealed a shift of the CO peak from 1708 to 1731 cm-1, indicating that an esterification reaction had occurred upon heating, thus producing crosslinked films. Higher molecular weight PEGs (10,000 and 1000 Da, respectively), having greater chain length, producing hydrogel networks with lower crosslink densities and higher average molecular weight between two consecutive crosslinks. Accordingly, such materials exhibited higher swelling rates. Hydrogels crosslinked with a low molecular weight PEG (PEG 200) showed rigid networks with high crosslink densities and, therefore, lower swelling rates. Polymer:plasticizer ratio alteration did not yield any discernable patterns, regardless of the method of analysis. The polymer–water interaction parameter (?) increased with increases in the crosslink density. SEM studies showed that porosity of the crosslinked films increased with increasing PEG MW, confirming what had been observed with swelling studies and thermal analysis, that the crosslink density must be decreased as the Mw of the crosslinker is increased. Hydrogels containing PMVE/MA/PEG 10,000 could be used for rapid delivery of drug, due to their low crosslink density. Moderately crosslinked PMVE/MA/PEG 1000 hydrogels or highly crosslinked PMVE/MA/PEG 200 systems could then be used in controlling the drug delivery rates. We are currently evaluating these systems, both alone and in combination, for use in sustained release drug delivery devices.
Resumo:
Organic gels have been synthesized by sol–gel polycondensation of phenol (P) and formaldehyde (F) catalyzed by sodium carbonate (C). The effect of synthesis parameters such as phenol/catalyst ratio (P/C), solvent exchange liquid and drying method, on the porous structure of the gels have been investigated. The total and mesopore volumes of the PF gels increased with increasing P/C ratio in the range of P/C B 8, after this both properties started to decrease with P/C ratio for P/C[8 and the gel with P/C = 8 showed the highest total and mesopore volumes of 1.281 and 1.279 cm3 g-1 respectively. The gels prepared by freeze drying possessed significantly higher porosities than the vacuum dried gels. The pore volume and average pore diameter of the freeze dried gels were significantly higher than those of the vacuum dried gels. T-butanol emerged as the preferred solvent for the removal of water from the PF hydrogel prior to drying, as significantly higher pore volumes and specific surface areas were obtained in the corresponding dried gels. The results showed that freeze drying with t-butanol and lower P/C ratios were favourable conditions for the synthesis of highly mesoporous phenol–formaldehyde gels.
Resumo:
Iron-5,10,15,20-tetraphenylporphyrin (FeTPP) has been incorporated into films of a coordinating hydrogel polymer support medium, poly(gamma-ethyl-L-glutamate) (PEG) functionalised with imidazole pendant arms (PEG-Im), and studied in situ on silver electrodes using a combination of both resonance Raman (RR) and surface-enhanced resonance Raman (SERR) spectroscopy. The SERR spectra give information on the portion of the film close to the electrode surface while RR spectra probe the
Resumo:
The potentiometric and AC impedance characteristics of all solid-state sodium-selective electrodes based on planar screen-printed Ag/AgCl electrodes are described. Two solid-state designs have been investigated. The first was based on the deposition of a sodium-selective PVC membrane directly on top of a screen-printed Ag/AgCl electrode, The second design included a NaCl doped hydrogel layer, between the PVC and Ag\AgCl layers. The hydrogel provides a mechanism to relieve any blockage to charge transfer occurring when PVC membranes are used directly on top of Ag/AgCl and also improves adhesion between the two layers. Results suggest the electrodes display Fast ion exchange kinetics, low noise and drift. The performance compares favorably to that of a conventional ion-selective electrode with internal filling solution.
Resumo:
Cataract surgery is one of the most commonly-practiced surgical procedures in Western medicine, and, while complications are rare, the most serious is infectious postoperative endophthalmitis. Bacteria may adhere to the implanted intraocular lens (IOL) and subsequent biofilm formation can lead to a chronic, difficult to treat infection. To date, no method to reduce the incidence of infectious endophthalmitis through bacterial elimination, while retaining optical transparency, has been reported. In this study we report a method to optimise the localisation of a cationic porphyrin at the surface of suitable acrylate copolymers, which is the first point of contact with potential pathogens. The porphyrin catalytically generates short-lived singlet oxygen, in the presence of visible light, which kills adherent bacteria indiscriminately. By restricting the photosensitiser to the surface of the biomaterial, reduction in optical transparency is minimised without affecting efficacy of singlet oxygen production. Hydrogel IOL biomaterials incorporating either methacrylic acid (MAA) or methyl methacrylate (MMA) co-monomers allow tuning of the hydrophobic and anionic properties to optimise the localisation of porphyrin. Physiochemical and antimicrobial properties of the materials have been characterised, giving candidate materials with self-generating, persistent anti-infective character against Gram-positive and Gram-negative organisms. Importantly, incorporation of porphyrin can also serve to protect the retina by filtering damaging shortwave visible light, due to the Soret absorption (?max) 430 nm). © 2012 Elsevier Ltd. All rights reserved.
Resumo:
The loading of the photosensitisers meso-Tetra (N-methyl-4-pyridyl) porphine tetra tosylate (TMP), methylene blue (MB) and IMP with sodium dodecyl sulphate (SDS) into and release from hydrogels composed of the polyelectrolyte poly(methyl vinyl ether-co-maleic acid) crosslinked in a 2:1 ratio with PEG 10,000 were investigated as a potential rapid photodynamic antimicrobial chemotherapy (PACT) treatment for infected wounds using iontophoresis as a novel delivery method. Photosensitiser uptake was very high; (% TMP uptake; 95.53-96.72%) (% MB uptake; 90.58-93.26%) and was PMVE/MA concentration independent, whilst SDS severely limited TMP uptake (5.93-8.75%). Hydrogel hardness, compressibility and adhesiveness on the dermal surface of neonate porcine skin increased with PMVE/MA concentration and were significantly increased with SDS.
The ionic conductivities of the hydrogels increased with PMVE/MA concentration. Drug release was PMVE/MA concentration independent, except for drug release under iontophoteric conditions for MB and TMP (without SDS). In just 15 min, the mean% drug concentrations released of TMP, TMP (with SDS) and MB using an electric current ranged from 22.30 to 64.72 mu gml(-1), 6.37-4.59 mu gml(-1) and 11.73-36.57 mu gml(-1) respectively. These concentrations were in excess of those required to induce complete kill of clinical strains of meticillin-resistant Staphylococcus aureus and Burkholderia cepacia. Thus these results support our contention that the iontophoteric delivery of IMP and MB using anti-adherent, electrically-responsive, PEG-crosslinked PMVE/MA hydrogels are a potential option in the rapid PACT treatment of infected wounds. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
The influence of poly(ethylene glycol) (PEG) plasticiser content and molecular weight on the physicochemical properties of films cast from aqueous blends of poly(methyl vinyl ether-co-maleic acid) was investigated using thermal analysis, swelling studies, scanning electron microscopy (SEM) and attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy. FTIR spectroscopy revealed a shift of the C{double bond, long}O peak from 1708 to 1731 cm, indicating that an esterification reaction had occurred upon heating, thus producing crosslinked films. Higher molecular weight PEGs (10,000 and 1000 Da, respectively), having greater chain length, producing hydrogel networks with lower crosslink densities and higher average molecular weight between two consecutive crosslinks. Accordingly, such materials exhibited higher swelling rates. Hydrogels crosslinked with a low molecular weight PEG (PEG 200) showed rigid networks with high crosslink densities and, therefore, lower swelling rates. Polymer:plasticizer ratio alteration did not yield any discernable patterns, regardless of the method of analysis. The polymer-water interaction parameter (?) increased with increases in the crosslink density. SEM studies showed that porosity of the crosslinked films increased with increasing PEG MW, confirming what had been observed with swelling studies and thermal analysis, that the crosslink density must be decreased as the M of the crosslinker is increased. Hydrogels containing PMVE/MA/PEG 10,000 could be used for rapid delivery of drug, due to their low crosslink density. Moderately crosslinked PMVE/MA/PEG 1000 hydrogels or highly crosslinked PMVE/MA/PEG 200 systems could then be used in controlling the drug delivery rates. We are currently evaluating these systems, both alone and in combination, for use in sustained release drug delivery devices. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
We characterized hydrogels, prepared from aqueous blends of poly(methyl vinyl ether-co-maleic acid) (PMVE/MA) and poly(ethylene glycol) (PEG 10,000 Daltons) containing a pore-forming agent (sodium bicarbonate, NaHCO ). Increase in NaHCO content increased the equilibrium water content (EWC) and average molecular weight between crosslinks (M ) of hydrogels. For example, the %EWC was 731, 860, 1109, and 7536% and the M was 8.26, 31.64, 30.04, and 3010.00 × 10 g/mol for hydrogels prepared from aqueous blends containing 0, 1, 2, and 5% w/w of NaHCO , respectively. Increase in NaHCO content also resulted in increased permeation of insulin. After 24 h, percentage permeation was 0.94, 3.68, and 25.71% across hydrogel membranes prepared from aqueous blends containing 0, 2, and 5% w/w of NaHCO , respectively. Hydrogels containing the pore-forming agent were fabricated into microneedles (MNs) for transdermal drug delivery applications by integrating the MNs with insulin-loaded patches. It was observed that the mean amount of insulin permeating across neonatal porcine skin in vitro was 20.62% and 52.48% from hydrogel MNs prepared from aqueous blends containing 0 and 5% w/w of NaHCO . We believe that these pore-forming hydrogels are likely to prove extremely useful for applications in transdermal drug delivery of biomolecules. © 2012 Wiley Periodicals, Inc.
Resumo:
meso-Tetra(N-methyl-4-pyridyl) porphine tetra tosylate (TMP) is a photosensitizer that can be used in photodynamic therapy (PDT) to induce cell death through generation of reactive oxygen species in targeted tumor cells. However, TMP is highly hydrophilic, and therefore, its ability to accumulate intracellularly is limited. In this study, a strategy to improve TMP uptake into cells has been investigated by encapsulating the compound in a hydrogel-based chitosan/alginate nanoparticle formulation. Nanoparticles of 560 nm in diameter entrapping 9.1 µg of TMP per mg of formulation were produced and examined in cell-based assays. These particles were endocytosed into human colorectal carcinoma HCT116 cells and elicited a more potent photocytotoxic effect than free drug. Antibodies targeting death receptor 5 (DR5), a cell surface apoptosis-inducing receptor up-regulated in various types of cancer and found on HCT116 cells, were then conjugated onto the particles. The conjugated antibodies further enhanced uptake and cytotoxic potency of the nanoparticle. Taken together, these results show that antibody-conjugated chitosan/alginate nanoparticles significantly enhanced the therapeutic effectiveness of entrapped TMP. This novel approach provides a strategy for providing targeted site-specific delivery of TMP and other photosensitizer drugs to treat colorectal tumors using PDT.