61 resultados para healing of bone fracture
Resumo:
Under inflammatory conditions, macrophages can differentiate into different functional subtypes. We show that bone marrow-derived macrophages constitutively express different levels of various complement-related genes. The relative expression levels are C1qb > Crry > CFH > C3 > C1r > CFB > DAF1 > CD59a > C2 > C1INH > C1s > C4. Upon activation, the expression of C1r, C1s, C3, C2, CFB, and C1INH was up-regulated, and CFH, CD59a, and DAF1, down-regulated in M1 (induced by interferon-? + lipopolysaccharides (LPS)) and M2b (induced by immune complex + LPS) macrophages. The expression of C4 and CFH was slightly up-regulated in interleukin (IL)-10-induced M2c macrophages. Complement gene expression in IL-4-induced M2a macrophages was weakly down-regulated as compared to resting M0 macrophages. Higher levels of C3, C1INH, and CFB but lower levels of CFH expression in M1 and M2b macrophage suggests that they may be involved in the alternative pathway of complement activation during inflammation.
Resumo:
There are few data on the role of prokinetic agents as maintenance therapy in moderately severe reflux oesophagitis despite the high relapse rate of this condition after healing.
Resumo:
We had previously demonstrated the participation of whole bone marrow cells from adult mice in the reconstitution of skin, including the epidermis and hair follicles. To get an insight into cell populations that give rise to the epithelial components of the reconstituted skin, we fractionated bone marrow cells derived from green fluorescent protein-transgenic mice by density gradient. Unexpectedly, we found that a substantial amount of mononucleated cells (approximately 30%) was recovered in the pellet fraction and that the cells in the pellet fraction preferentially differentiated into epithelial components of skin, rather than the cells in the mononuclear cell fraction. The pellet fraction contained more CD45-negative (thus uncommitted to the hematopoietic cell lineage) cells than the mononuclear cell fraction. These results indicate that density gradient fractionation results in significant loss of specific progenitor cells into the usually discarded pellet fraction.
Resumo:
Conflicting results have been reported on the detection of paramyxovirus transcripts in Paget's disease, and a possible explanation is differences in the sensitivity of RT-PCR methods for detecting virus. In a blinded study, we found no evidence to suggest that laboratories that failed to detect viral transcripts had less sensitive RT-PCR assays, and we did not detect measles or distemper transcripts in Paget's samples using the most sensitive assays evaluated.
Introduction: There is conflicting evidence on the possible role of persistent paramyxovirus infection in Paget's disease of bone (PDB). Some workers have detected measles virus (MV) or canine distemper virus (CDV) transcripts in cells and tissues from patients with PDB, but others have failed to confirm this finding. A possible explanation might be differences in the sensitivity of RT-PCR methods for detecting virus. Here we performed a blinded comparison of the sensitivity of different RT-PCR-based techniques for MV and CDV detection in different laboratories and used the most sensitive assays to screen for evidence of viral transcripts in bone and blood samples derived from patients with PDB.
Materials and Methods: Participating laboratories analyzed samples spiked with known amounts of MV and CDV transcripts and control samples that did not contain viral nucleic acids. All analyses were performed on a blinded basis.
Results: The limit of detection for CDV was 1000 viral transcripts in three laboratories (Aberdeen, Belfast, and Liverpool) and 10,000 transcripts in another laboratory (Manchester). The limit of detection for MV was 16 transcripts in one laboratory (NIBSC), 1000 transcripts in two laboratories (Aberdeen and Belfast), and 10,000 transcripts in two laboratories (Liverpool and Manchester). An assay previously used by a U.S.-based group to detect MV transcripts in PDB had a sensitivity of 1000 transcripts. One laboratory (Manchester) detected CDV transcripts in a negative control and in two samples that had been spiked with MV. None of the other laboratories had false-positive results for MV or CDV, and no evidence of viral transcripts was found on analysis of 12 PDB samples using the most sensitive RT-PCR assays for MV and CDV.
Conclusions: We found that RT-PCR assays used by different laboratories differed in their sensitivity to detect CDV and MV transcripts but found no evidence to suggest that laboratories that previously failed to detect viral transcripts had less sensitive RT-PCR assays than those that detected viral transcripts. False-positive results were observed with one laboratory, and we failed to detect paramyxovirus transcripts in PDB samples using the most sensitive assays evaluated. Our results show that failure of some laboratories to detect viral transcripts is unlikely to be caused by problems with assay sensitivity and highlight the fact that contamination can be an issue when searching for pathogens by sensitive RT-PCR-based techniques.
Resumo:
Accurate models of cement and interface fatigue are essential if computationally assessing risk of aseptic loosening of cemented joint replacements is to become clinically relevant. A series of approaches will be presented that attempt to model several aspects of bone cement fatigue relevant to predicting cemented joint replacement failure. Failure models for homogeneous (bulk) bone cement and its interface with implant and host tissue are reviewed. Variability introduced by porosity and interaction between fatigue and creep are also considered. Finally, some current and potential future developments are discussed.
Resumo:
Examination of a selection of shell and bone from archaeological assemblages excavated at Niah Cave and Gua Sireh, both of which are located in Sarawak, Borneo, has revealed the deliberate application of coloured material to one or more surfaces. Small fragments of the surface colourant were analysed using a variety of techniques, including microscopy, energy dispersive microwave analysis and infra-red spectrophotometry. These procedures established that, although red in colour, the applied coating in each instance was not red iron oxide. It is suggested that, based on the chemical components present, this coating was a tree resin or a similar organic substance. The paper further reports the presence of enhanced chloride values in the colourant recovered from the ancient human cranial fragment tested. It is suggested that elevated concentrations of this trace element may indicate that the site, the human remains or ingredients within the colourant were once in close proximity to the sea. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
For many decades Palaeolithic research viewed the development of early modern human behaviour as largely one of progress down a path towards the modernity of the present. The European Palaeolithic sequence the most extensively studied was for a long time the yard-stick against which records from other regions were judged. Recent work undertaken in Africa and increasingly Asia, however, now suggests that the European evidence may tell a story that is more parochial and less universal than previously thought. While tracking developments at the large scale (the grand narrative) remains important, there is growing appreciation that to achieve a comprehensive understanding of human behavioural evolution requires an archaeologically regional perspective to balance this. One of the apparent markers of human modernity that has been sought in the global Palaeolithic record, prompted by finds in the European sequence, is innovation in bonebased technologies. As one step in the process of re-evaluating and contextualizing such innovations, in this article we explore the role of prehistoric bone technologies within the Southeast Asian sequence, where they have at least comparable antiquity to Europe and other parts of Asia. We observe a shift in the technological usage of bone from a minor component to a medium of choice during the second half of the Last Termination and into the Holocene. We suggest that this is consistent with it becoming a focus of the kinds of inventive behaviour demanded of foraging communities as they adapted to the far-reaching environmental and demographic changes that were reshaping this region at that time. This record represents one small element of a much wider, much longerterm adaptive process, which we would argue is not confined to the earliest instances of a particular technology or behaviour, but which forms part of an on-going story of our behavioural evolution. © 2012 The McDonald Institute for Archaeological Research.
Resumo:
This paper presents an experimental and numerical study focused on the tensile fibre fracture toughness characterisation of hybrid plain weave composite laminates using non-standardized Overheight Compact Tension (OCT) specimens. The position as well as the strain field ahead of the crack tip in the specimens was determined using a digital speckle photogrammetry system. The limitation on the applicability of standard data reduction schemes for the determination of the intralaminar fibre fracture toughness of composites is presented and discussed. A methodology based on the numerical evaluation of the strain energy release rate using the J-integral method is proposed to derive new geometric correction functions for the determination of stress intensity factor for alternative composite specimen geometries. A comparison between different methods currently available to compute the intralaminar fracture toughness in composites is also presented and discussed. Good agreement between numerical and experimental results using the proposed methodology was obtained.
Resumo:
During nanoindentation and ductile-regime machining of silicon, a phenomenon known as “self-healing” takes place in that the microcracks, microfractures, and small spallings generated during the machining are filled by the plastically flowing ductile phase of silicon. However, this phenomenon has not been observed in simulation studies. In this work, using a long-range potential function, molecular dynamics simulation was used to provide an improved explanation of this mechanism. A unique phenomenon of brittle cracking was discovered, typically inclined at an angle of 45° to 55° to the cut surface, leading to the formation of periodic arrays of nanogrooves being filled by plastically flowing silicon during cutting. This observation is supported by the direct imaging. The simulated X-ray diffraction analysis proves that in contrast to experiments, Si-I to Si-II (beta tin) transformation during ductile-regime cutting is highly unlikely and solid-state amorphisation of silicon caused solely by the machining stress rather than the cutting temperature is the key to its brittle-ductile transition observed during the MD simulations
Resumo:
We hypothesise that following a bone fracture there is systemic recruitment of bone forming cells to a fracture site. A rabbit ulnar osteotomy model was adapted to trace the movement of osteogenic cells. Bone marrow mesenchymal stem cells from 41 NZW rabbits were isolated, culture-expanded and fluorescently labelled. The labelled cells were either re-implanted into the fracture gap (Group A); into a vein (Group B); or into a remote tibial bone marrow cavity 48 h after the osteotomy (Group C) or 4 weeks before the osteotomy was established (Group D), and a control group (Group E) had no labelled cells given. To quantify passive leakage of cells to an injury site, inert beads were also co-delivered in Group B. Samples of the fracture callus tissue and various organs were harvested at discrete sacrifice time-points to trace and quantify the labelled cells. At 3 weeks following osteotomy, the number of labelled cells identified in the callus of Group C, was significantly greater than following IV delivery, Group B, and there was no difference in the number of labelled cells in the callus tissues, between Groups C and A, indicating the labelled bone marrow cells were capable of migrating to the fracture sites from the remote bone marrow cavity. Significantly fewer inert beads than labelled cells were identified in Group B callus, suggesting some of the bone-forming cells were actively recruited and selectively chosen to the fracture site, rather than passively leaked into the circulation and to bone injury site. This investigation supports the hypothesis that some osteoblasts involved in fracture healing were systemically mobilised and recruited to the fracture from remote bone marrow sites. © 2005 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Osteoporosis (OP) is one of the most prevalent bone diseases worldwide with bone fracture the major clinical consequence. The effect of OP on fracture repair is disputed and although it might be expected for fracture repair to be delayed in osteoporotic individuals, a definitive answer to this question still eludes us. The aim of this study was to clarify the effect of osteoporosis in a rodent fracture model. OP was induced in 3-month-old rats (n = 53) by ovariectomy (OVX) followed by an externally fixated, mid-diaphyseal femoral osteotomy at 6 months (OVX group). A further 40 animals underwent a fracture at 6 months (control group). Animals were sacrificed at 1, 2, 4, 6, and 8 weeks postfracture with outcome measures of histology, biomechanical strength testing, pQCT, relative BMD, and motion detection. OVX animals had significantly lower BMD, slower fracture repair (histologically), reduced stiffness in the fractured femora (8 weeks) and strength in the contralateral femora (6 and 8 weeks), increased body weight, and decreased motion. This study has demonstrated that OVX is associated with decrease in BMD (particularly in trabecular bone) and a reduction in the mechanical properties of intact bone and healing fractures. The histological, biomechanical, and radiological measures of union suggest that OVX delayed fracture healing. (C) 2007 Orthopaedic Research Society. Published by Wiley Periodicals.