64 resultados para grassland ecosystem
Resumo:
The focus of this study was to disentangle the effects of multiple stressors on biodiversity, ecosystem functioning and stability. This project examined the effects of anthropogenic increased nutrient loads on the diversity of coastal ecosystems and the effects of loss of species on ecosystem functioning. Specifically, the direct effect of sewage outfalls on benthic communities was assessed using a fully replicated survey that incorporated spatial and temporal variation. In addition, two field experiments examined the effects of loss of species at multiple trophic levels, and tested for potential interactive effects with enhanced nutrient concentration conditions on benthic assemblage structure and ecosystem functioning. This research addressed priority issues outlined in the Biodiversity Knowledge Programme for Ireland (2006) and also aimed to deliver information relevant to European Union (EU) directives (the Water Framework Directive [WFD], the Habitats Directive and the Marine Strategy Framework Directive).
Resumo:
Comparison of flow duration curves for a weir draining an undrained raised peat with those generated 20 years previously reveal that more recent curves reflect to be flatter with a lower Q95/Q5 ratio. Comparison of the bog topography for the same period revealed that although marginal drainage/peat reclamation had resulted in desiccation of peat around the bog margin and more frequent intense runoff, the central part of the bog had subsided to form an enclosed basin ,resulting in the creation of newly formed lakes that gave the central part of the bog an improved capacity to store, and more slowly discharge, water. Interrogation of groundwater monitoring data revealed a net decline in groundwater levels of up to three metres in the glacial tills underlying the bog associated with deepening and expansion of a marginal drain network which penetrated the base of the peat. Comparing organic carbon levels in peat the central part of the bog over a ten year period revealed an overall increase, with changes being most marked in deeper fen peat layers. These findings suggest that the decline in groundwater levels in the peat substrate resulted in an increase in effective stress in the peat causing greater subsidence in the central part of the bog due to greater overall thickness. Study results highlight how the hydrology of apparently isolated obotrophic raised bog ecosystems may be influenced by groundwater pressures in deeper deposits, and how marginal drains may have the capacity to impact areas at significant distances.
Resumo:
White storks (Ciconia ciconia) fed in contaminated waters resulting from the Aznacollar acid mining-sludge spillage into the R. Guadiamar, which feeds the eastern flank of the Guadalquivir marshes (Doñana), S.W. Spain. The sludge was rich in a range of toxic elements, and in organic pollutants such as the aromatic amines. Storks did not exhibit elevated metals in their blood immediately following the accident, but chick blood collected the year following the accident showed genotoxic damage compared to the controls. In this study lead isotope analysis was used to assess if the storks had ingested sludge-derived contaminants. The sludge lead isotope ratio was distinct from that of the Doñana sediments. The stork blood lead isotope ratios exactly matched that of the sludge. It was concluded that the storks had ingested sludge-derived contaminants. A detailed study of the lead contamination along the R. Guadiamar and the R. Guadalquivir (of which the Guadiamar is a tributary) was also conducted to place the white stork colony lead exposure in the context of the spatial contamination of the storks' habitat.
Resumo:
One of the most important bird breeding and over wintering sites in the west of Europe, the Coto Doñana, was severely impacted by the release of 5 million cubic meters of acid waste from the processing of pyrite ore. The waste entered ecologically sensitive areas of the park (including breeding areas for internationally endangered bird species) causing sustained pH decreases from pH 8.5 to 4.5 and resulting in massive metal contamination of the impacted ecosystem. The contaminating sludge waste contained arsenic at 0.6%, lead at 1.2% and zinc at 0.8% on a dry weight basis. The acid conditions facilitated the solubilization of these metals, leading to water concentrations lethal for aquatic wildlife. The accident caused considerable fish and invertebrate kills and has severe consequences for the protected bird species dependent on the impacted habitats and adjacent areas.
Resumo:
Interaction with ecological models can improve stakeholder participation in fisheries management. Problems exist in efficiently communicating outputs to stakeholders and an objective method of structuring stakeholder differences is lacking. This paper aims to inform the design of a multi-user communication interface for fisheries management by identifying functional stakeholder groups. Intuitive categorisation of stakeholders, derived from survey responses, is contrasted with an Evidence-Based method derived from analysis of stakeholder literature. Intuitive categorisation relies on interpretation and professional judgement when categorising stakeholders among conventional stakeholder groups. Evidence-Based categorisation quantitatively characterises each stakeholder with a vector of four management objective interest-strength values (Yield, Employment, Profit and Ecosystem Preservation). Survey respondents agreed little in forming intuitive groups and the groups were poorly defined and heterogeneous in interests. In contrast the Evidence-Based clusters were well defined and largely homogeneous, so more useful for identifying functional relations with model outputs. The categorisations lead to two different clusterings of stakeholders and suggest unhelpful stereotyping of stakeholders may occur with the Intuitive categorisation method. Stakeholder clusters based on literature-evidence show a high degree of common interests among clusters and is encouraging for those seeking to maximise dialogue and consensus forming. © 2013 Elsevier Ltd.
Resumo:
Plant roots can establish associations with neutral, beneficial and pathogenic groups of soil organisms. Although it has been recognized from the study of individual isolates that these associations are individually important for plant growth, little is known about interactions of whole assemblages of beneficial and pathogenic microorganisms associating with plants. We investigated the influence of an interaction between local arbuscular mycorrhizal (AM) fungal and pathogenic/saprobic microbial assemblages on the growth of two different plant species from semi-arid grasslands in NE Germany (Mallnow near Berlin). In a greenhouse experiment each plant species was grown for six months in either sterile soil or in sterile soil with one of three different treatments: 1) an AM fungal spore fraction isolated from field soil from Mallnow; 2) a soil pathogen/saprobe fraction consisting of a microbial community prepared with field soil from Mallnow and; 3) the combined AM fungal and pathogen/saprobe fractions. While both plant species grew significantly larger in the presence of AM fungi, they responded negatively to the pathogen/saprobe treatment. For both plant species, we found evidence of pathogen protection effects provided by the AM fungal assemblages. These results indicate that interactions between assemblages of beneficial and pathogenic microorganisms can influence the growth of host plants, but that the magnitude of these effects is plant species-specific.
Resumo:
Soil food webs are characterised by complex direct and indirect effects among the organisms. Consumption of microorganisms by soil animals is considered as an important factor that contributes to the stability of communities, though cascading effects within the food web can be difficult to detect. In a greenhouse experiment, an addition of a high number the fungal feeding collembola Folsomia quadrioculata was applied to grassland soil food webs in monocultures of three plant species: Plantago lanceolato (forb), Lotus corniculatus (legume) and Holcus lanatus (grass). The abundance of microorganisms, determined as the abundances of phospholipid fatty acids (PLFAs) and the abundances of resident invertebrates, nematodes and collembolans, did not change due to the addition of E quadrioculata. Trophic positions of collembolans were determined by analyses of natural abundances of N-15 stable isotopes. The use of food resources by microorganisms and collembolans was determined by C-13 analysis of microbial PLFAs and solid samples of collembolans. delta C-13 values of the resident collembola Folsomia fimetaria were lower in the presence of E quadrioculata than in the control food webs indicating a use of more depleted C-13 food resources by E fimetaria. The delta N-15 values of E fimetaria did not change at the addition of E quadrioculata thus no change of trophic levels was detected. The switch of E fimetaria to a different food resource could be due to indirect interactions in the food web as the two collembolan species were positioned on different trophic positions, according to different delta N-15 values. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In the presence of anthropogenic climate change, gross environmental degradation, and mass abject poverty, many political theorists currently debate issues such as people's right to water, the right to food, and the distribution of rights to natural resources more generally. However, thus far many theorists either focus (somewhat arbitrarily) only on one particular resource (e.g. water) or they treat all natural resources alike, meaning that many relevant distinctions within the group of natural resources are overlooked. Hence, the paper will start with an analysis of the various forms which natural resources can take and how this might influence one's conception of resource rights. In so doing, the paper argues that we have to carefully distinguish between the actual physical resources people might control and how we distribute these, and the life-sustaining benefits each and every person draws from sustainable and functioning ecosystems. Based on this distinction, the paper will argue for a right to the benefits of life-sustaining ecosystem services as a universal basic right every person has. Further distributive claims with respect to particular physical resources would thus be limited by the requirements of such a basic right.