34 resultados para graphical factor models
Resumo:
As key molecules that drive progression and chemoresistance in gastrointestinal cancers, epidermal growth factor receptor (EGFR) and HER2 have become efficacious drug targets in this setting. Lapatinib is an EGFR/HER2 kinase inhibitor suppressing signaling through the RAS/RAF/MEK (MAP/ERK kinase)/MAPK (mitogen-activated protein kinase) and PI3K (phosphoinositide 3-kinase)/AKT pathways. Histone deacetylase inhibitors (HDACi) are a novel class of agents that induce cell cycle arrest and apoptosis following the acetylation of histone and nonhistone proteins modulating gene expression and disrupting HSP90 function inducing the degradation of EGFR-pathway client proteins. This study sought to evaluate the therapeutic potential of combining lapatinib with the HDACi panobinostat in colorectal cancer (CRC) cell lines with varying EGFR/HER2 expression and KRAS/BRAF/PIK3CA mutations. Lapatinib and panobinostat exerted concentration-dependent antiproliferative effects in vitro (panobinostat range 7.2-30 nmol/L; lapatinib range 7.6-25.8 μmol/L). Combined lapatinib and panobinostat treatment interacted synergistically to inhibit the proliferation and colony formation in all CRC cell lines tested. Combination treatment resulted in rapid induction of apoptosis that coincided with increased DNA double-strand breaks, caspase-8 activation, and PARP cleavage. This was paralleled by decreased signaling through both the PI3K and MAPK pathways and increased downregulation of transcriptional targets including NF-κB1, IRAK1, and CCND1. Panobinostat treatment induced downregulation of EGFR, HER2, and HER3 mRNA and protein through transcriptional and posttranslational mechanisms. In the LoVo KRAS mutant CRC xenograft model, the combination showed greater antitumor activity than either agent alone, with no apparent increase in toxicity. Our results offer preclinical rationale warranting further clinical investigation combining HDACi with EGFR and HER2-targeted therapies for CRC treatment.
Resumo:
We show that the X-ray line flux of the Mn Kα line at 5.9 keV from the decay of 55Fe is a promising diagnostic to distinguish between Type Ia supernova (SN Ia) explosion models. Using radiation transport calculations, we compute the line flux for two three-dimensional explosion models: a near-Chandrasekhar mass delayed detonation and a violent merger of two (1.1 and 0.9 M⊙) white dwarfs. Both models are based on solar metallicity zero-age main-sequence progenitors. Due to explosive nuclear burning at higher density, the delayed-detonation model synthesizes ˜3.5 times more radioactive 55Fe than the merger model. As a result, we find that the peak Mn Kα line flux of the delayed-detonation model exceeds that of the merger model by a factor of ˜4.5. Since in both models the 5.9-keV X-ray flux peaks five to six years after the explosion, a single measurement of the X-ray line emission at this time can place a constraint on the explosion physics that is complementary to those derived from earlier phase optical spectra or light curves. We perform detector simulations of current and future X-ray telescopes to investigate the possibilities of detecting the X-ray line at 5.9 keV. Of the currently existing telescopes, XMM-Newton/pn is the best instrument for close (≲1-2 Mpc), non-background limited SNe Ia because of its large effective area. Due to its low instrumental background, Chandra/ACIS is currently the best choice for SNe Ia at distances above ˜2 Mpc. For the delayed-detonation scenario, a line detection is feasible with Chandra up to ˜3 Mpc for an exposure time of 106 s. We find that it should be possible with currently existing X-ray instruments (with exposure times ≲5 × 105 s) to detect both of our models at sufficiently high S/N to distinguish between them for hypothetical events within the Local Group. The prospects for detection will be better with future missions. For example, the proposed Athena/X-IFU instrument could detect our delayed-detonation model out to a distance of ˜5 Mpc. This would make it possible to study future events occurring during its operational life at distances comparable to those of the recent supernovae SN 2011fe (˜6.4 Mpc) and SN 2014J (˜3.5 Mpc).
Resumo:
Oyster populations around the world have seen catastrophic decline which has been largely attributed to overexploitation, disease and pollution. While considerable effort and resources have been implemented into restoring these important environmental engineers, the success of oyster populations is often limited by poor understanding of site-specific dispersal patterns of propagules. Water-borne transport is a key factor controlling or regulating the dispersal of the larval stage of benthic marine invertebrates which have limited mobility. The distribution of the native oyster Ostrea edulis in Strangford Lough, Northern Ireland, together with their densities and population structure at subtidal and intertidal sites has been documented at irregular intervals between 1997 and 2013. This paper revisits this historical data and considers whether different prevailing environmental conditions can be used to explain the distribution, densities and population structure of O. edulis in Strangford Lough. The approach adopted involved comparing predictive 2D hydrodynamic models coupled with particle tracking to simulate the dispersal of oyster larvae with historical and recent field records of the distribution of both subtidal and intertidal, populations since 1995. Results from the models support the hypothesis that commercial stocks of O. edulis introduced into Strangford Lough in the 1990s resulted in the re-establishment of wild populations of oysters in the Northern Basin which in turn provided a potential source of propagules for subtidal populations. These results highlight that strategic site selection (while inadvertent in the case of the introduced population in 1995) for the re-introduction of important shellfish species can significantly accelerate their recovery and restoration.
Resumo:
Researchers have proposed 1-factor, 2-factor, and bifactor solutions to the 12-item Consideration of Future Consequences Scale (CFCS-12). In order to overcome some measurement problems and to create a robust and conceptually useful two-factor scale the CFCS-12 was recently modified to include two new items and to become the CFCS-14. Using a University sample, we tested four competing models for the CFCS-14: (a) a 12-item unidimensional model, (b) a model fitted for two uncorrelated factors (CFC-Immediate and CFC-Future), (c) a model fitted for two correlated factors (CFC-I and CFC-F), and (d) a bifactor model. Results suggested that the addition of the two new items has strengthened the viability of a two factor solution of the CFCS-14. Results of linear regression models suggest that the CFC-F factor is redundant. Further studies using alcohol and mental health indicators are required to test this redundancy.