102 resultados para gastric emptying
Claudin-1 Has Tumor Suppressive Activity and Is a Direct Target of RUNX3 in Gastric Epithelial Cells
Resumo:
BACKGROUND & AIMS: The transcription Factor RUNX3 is a gastric tumor suppressor. Tumorigenic Runx3(-/-) gastric epithelial cells attach weakly to each other, compared with nontumorigenic Runx3(+/+) cells. We alined to identify RUNX3 target genes that promote cell-cell contact to Improve our understanding of RUNX3's role in Suppressing gastric carcinogenesis. METHODS: We compared gene expression profiles of Runx3(+/+) and Runx3(-/-) cells and observed down-regulation of genes associated with cell-cell adhesion in Runx3(-/-) cells. Reporter, mobility shift, and chromatin immunoprecipitation assays were used to examine the regulation of these genes by RUNX3. Tumorigenesis assays and immunohistologic, analyses of human gastric tumors were performed to confirm the role of the candidate genes ill gastric tumor development. RESULTS: Mobility shift and chromatin immunoprecipitation assays revealed that the promoter activity of the gene that encodes the tight Junction protein claudin-1 was up-regulated via the binding of RUNX3 to the RUNX consensus sites. The tumorigenicity of gastric epithelial cells From Runx3(-/-) mice was significantly reduced by restoration of claudin-1 expression, whereas knockdown of claudin-1. increased the tumorigenicity of human gastric cancer cells. Concomitant expression of RUNX3 and claudin-1 was observed in human normal gastric epithelium and cancers. CONCLUSIONS: The tight junction protein claudin-1 has gastric tumor suppressive activity and is a direct transcriptional target of RUNX3. Claudin-1 is down-regulated during the epithelial-mesenchymal transition; RUNX3 might therefore act as a tumor suppressor to antagonize the epithelial-mesenchymal transition.
Resumo:
Loss of RUNX3 expression is suggested to be causally related to gastric cancer as 45% to 60% of gastric cancers do not express RUNX3 mainly due to hypermethylation of the RUNX3 promoter. Here, we examined for other defects in the properties of RUNX3 in gastric cancers that express RUNX3. Ninety-seven gastric cancer tumor specimens and 21 gastric cancer cell lines were examined by immunohistochemistry using novel anti-RUNX3 monoclonal antibodies. In normal gastric mucosa, RUNX3 was expressed most strongly in the nuclei of chief cells as well as in surface epithelial cells. In chief cells, a significant portion of the protein was also found in the cytoplasm. RUNX3 was not detectable in 43 of 97 (44%) cases of gastric cancers tested and a further 38% showed exclusive cytoplasmic localization, whereas only 18% showed nuclear localization. Evidence is presented suggesting that transforming growth factor-beta is an inducer of nuclear translocation of RUNX3, and RUNX3 in the cytoplasm of cancer cells is inactive as a tumor suppressor. RUNX3 was found to be inactive in 82% of gastric cancers through either gene silencing or protein mislocalization to the cytoplasm. In addition to the deregulation of mechanisms controlling gene expression, there would also seem to be at least one other mechanism controlling nuclear translocation of RUNX3 that is impaired frequently in gastric cancer.
Resumo:
The aim of our study was to investigate whether intakes of total fat and fat subtypes were associated with esophageal adenocarcinoma (EAC), esophageal squamous cell carcinoma (ESCC), gastric cardia or gastric noncardia adenocarcinoma. From 1995–1996, dietary intake data was reported by 494,978 participants of the NIH-AARP cohort. The 630 EAC, 215 ESCC, 454 gastric cardia and 501 gastric noncardia adenocarcinomas accrued to the cohort. Cox proportional hazards regression was used to examine the association between the dietary fat intakes, whilst adjusting for potential confounders. Although apparent associations were observed in energy-adjusted models, multivariate adjustment attenuated results to null [e.g., EAC energy adjusted hazard ratio (HR) and 95% confidence interval (95% CI) 1.66 (1.27–2.18) p for trend <0.01; EAC multivariate adjusted HR (95% CI) 1.17 (0.84–1.64) p for trend 5 0.58]. Similar patterns were also observed for fat subtypes [e.g., EAC saturated fat, energy adjusted HR (95% CI) 1.79 (1.37–2.33) p for trend <0.01; EAC saturated fat, multivariate adjusted HR (95% CI) 1.27 (0.91–1.78) p for trend 5 0.28]. However, in multivariate models an inverse association for polyunsaturated fat (continuous) was seen for EAC in subjects with a body mass index (BMI) in the normal range (18.5–<25 kg/m2) [HR (95% CI) 0.76 (0.63–0.92)], that was not present in overweight subjects [HR (95% CI) 1.04 (0.96–1.14)], or in unstratified analysis [HR (95% CI) 0.97 (0.90–1.05)]. p for interaction 5 0.02. Overall, we found null associations between the dietary fat intakes with esophageal or gastric cancer risk; although a protective effect of polyunsaturated fat intake was seen for EAC in subjects with a normal BMI.
Resumo:
BACKGROUND & AIMS:
Gastric cancer (GC) is a heterogeneous disease comprising multiple subtypes that have distinct biological properties and effects in patients. We sought to identify new, intrinsic subtypes of GC by gene expression analysis of a large panel of GC cell lines. We tested if these subtypes might be associated with differences in patient survival times and responses to various standard-of-care cytotoxic drugs.
METHODS:
We analyzed gene expression profiles for 37 GC cell lines to identify intrinsic GC subtypes. These subtypes were validated in primary tumors from 521 patients in 4 independent cohorts, where the subtypes were determined by either expression profiling or subtype-specific immunohistochemical markers (LGALS4, CDH17). In vitro sensitivity to 3 chemotherapy drugs (5-fluorouracil, cisplatin, oxaliplatin) was also assessed.
RESULTS:
Unsupervised cell line analysis identified 2 major intrinsic genomic subtypes (G-INT and G-DIF) that had distinct patterns of gene expression. The intrinsic subtypes, but not subtypes based on Lauren's histopathologic classification, were prognostic of survival, based on univariate and multivariate analysis in multiple patient cohorts. The G-INT cell lines were significantly more sensitive to 5-fluorouracil and oxaliplatin, but more resistant to cisplatin, than the G-DIF cell lines. In patients, intrinsic subtypes were associated with survival time following adjuvant, 5-fluorouracil-based therapy.
CONCLUSIONS:
Intrinsic subtypes of GC, based on distinct patterns of expression, are associated with patient survival and response to chemotherapy. Classification of GC based on intrinsic subtypes might be used to determine prognosis and customize therapy.
Resumo:
Gastric cancer is a major cause of global cancer mortality. We surveyed the spectrum of somatic alterations in gastric cancer by sequencing the exomes of 15 gastric adenocarcinomas and their matched normal DNAs. Frequently mutated genes in the adenocarcinomas included TP53 (11/15 tumors), PIK3CA (3/15) and ARID1A (3/15). Cell adhesion was the most enriched biological pathway among the frequently mutated genes. A prevalence screening confirmed mutations in FAT4, a cadherin family gene, in 5% of gastric cancers (6/110) and FAT4 genomic deletions in 4% (3/83) of gastric tumors. Frequent mutations in chromatin remodeling genes (ARID1A, MLL3 and MLL) also occurred in 47% of the gastric cancers. We detected ARID1A mutations in 8% of tumors (9/110), which were associated with concurrent PIK3CA mutations and microsatellite instability. In functional assays, we observed both FAT4 and ARID1A to exert tumor-suppressor activity. Somatic inactivation of FAT4 and ARID1A may thus be key tumorigenic events in a subset of gastric cancers.
Resumo:
Atrophic gastritis can develop in patients with Helicobacter pylori infection leading to a reduction in basal acid output. Whether the atrophy that develops is reversible is controversial.
Resumo:
PURPOSE:
The protease inhibitor bortezomib attenuates the action of NF-κB and has shown preclinical activity alone and in combination with chemotherapy.
DESIGN:
A Phase I dose-escalation study was performed administering bortezomib (0.7, 1.0, 1.3 and 1.6 mg m(-2) on days 1 and 8 from cycle 2 onwards) in combination with Epirubicin 50 mg m(-2) intravenously on day 1, Carboplatin AUC 5 day 1 and Capecitabine 625 mg m(-2) BD days 1-21 every 21 days (VECarboX regimen), in patients with advanced oesophagogastric adenocarcinoma. The primary objective was to define the maximum tolerated dose (MTD) of Bortezomib when combined with ECarboX.
RESULTS:
18 patients received bortezomib 0.7 (n = 6), 1.0 (n = 3), 1.3 (n = 6) and 1.6 mg m(-2) (n = 3) and a protocol amendment reducing the capecitabine dose to 500 mg m(-2) BD was enacted due to myelotoxicity. Common treatment-related non-haematological adverse events of any grade were fatigue (83.3 %), anorexia (55.6 %), constipation (55.6 %) and nausea (55.6 %). Common Grade 3/4 haematological toxicities were neutropenia (77.8 %) and thrombocytopenia (44.4 %). Objective responses were achieved in 6 patients (33.3 %) and a further 5 patients (27.8 %) had stable disease for >8 weeks.
CONCLUSIONS:
The addition of Bortezomib to ECarboX is well tolerated and response rates are comparable with standard chemotherapy.
Resumo:
Gastric cancer is a leading cause of cancer-related mortality, and chemotherapeutic options are currently limited. PIM1 kinase, an oncogene that promotes tumorigenesis in several cancer types, might represent a novel therapeutic target in gastric cancer.