49 resultados para future directions
Resumo:
Although respiratory syncytial virus (RSV) is a major human respiratory pathogen, our knowledge of how it causes disease in humans is limited. Airway epithelial cells are the primary targets of RSV infection in vivo, so the generation and exploitation of RSV infection models based on morphologically and physiologically authentic well-differentiated primary human airway epithelial cells cultured at an air-liquid interface (WD-PAECs) provide timely developments that will help to bridge this gap. Here we review the interaction of RSV with WD-PAEC cultures, the authenticity of the RSV-WD-PAEC models relative to RSV infection of human airway epithelium in vivo, and future directions for their exploitation in our quest to understand RSV pathogenesis in humans.
Resumo:
Managing gait disturbances in people with Parkinson’s disease is a pressing challenge, as symptoms can contribute to injury and morbidity through an increased risk of falls. While drug-based interventions have limited efficacy in alleviating gait impairments, certain non-pharmacological methods, such as cueing, can also induce transient improvements to gait. The approach adopted here is to use computationally-generated sounds to help guide and improve walking actions. The first method described uses recordings of force data taken from the steps of a healthy adult which in turn were used to synthesize realistic gravel-footstep sounds that represented different spatio-temporal parameters of gait, such as step duration and step length. The second method described involves a novel method of sonifying, in real time, the swing phase of gait using real-time motion-capture data to control a sound synthesis engine. Both approaches explore how simple but rich auditory representations of action based events can be used by people with Parkinson’s to guide and improve the quality of their walking, reducing the risk of falls and injury. Studies with Parkinson’s disease patients are reported which show positive results for both techniques in reducing step length variability. Potential future directions for how these sound approaches can be used to manage gait disturbances in Parkinson’s are also discussed.
Resumo:
Many modern networks are \emph{reconfigurable}, in the sense that the topology of the network can be changed by the nodes in the network. For example, peer-to-peer, wireless and ad-hoc networks are reconfigurable. More generally, many social networks, such as a company's organizational chart; infrastructure networks, such as an airline's transportation network; and biological networks, such as the human brain, are also reconfigurable. Modern reconfigurable networks have a complexity unprecedented in the history of engineering, resembling more a dynamic and evolving living animal rather than a structure of steel designed from a blueprint. Unfortunately, our mathematical and algorithmic tools have not yet developed enough to handle this complexity and fully exploit the flexibility of these networks. We believe that it is no longer possible to build networks that are scalable and never have node failures. Instead, these networks should be able to admit small, and maybe, periodic failures and still recover like skin heals from a cut. This process, where the network can recover itself by maintaining key invariants in response to attack by a powerful adversary is what we call \emph{self-healing}. Here, we present several fast and provably good distributed algorithms for self-healing in reconfigurable dynamic networks. Each of these algorithms have different properties, a different set of gaurantees and limitations. We also discuss future directions and theoretical questions we would like to answer. %in the final dissertation that this document is proposed to lead to.
Resumo:
Diabetic retinopathy (DR) is a leading cause of visual impairment worldwide. Patients with DR may irreversibly lose sight as a result of the development of diabetic macular edema (DME) and/or proliferative diabetic retinopathy (PDR); retinal blood vessel dysfunction and degeneration plays an essential role in their pathogenesis. Although new treatments have been recently introduced for DME, including intravitreal vascular endothelial growth factor inhibitors (anti-VEGFs) and steroids, a high proportion of patients (~40-50%) do not respond to these therapies. Furthermore, for people with PDR, laser photocoagulation remains a mainstay therapy despite this being an inherently destructive procedure. Endothelial progenitor cells (EPCs) are a low-frequency population of circulating cells known to be recruited to sites of vessel damage and tissue ischemia where they promote vascular healing and re-perfusion. A growing body of evidence suggests that the number and function of EPCs are altered in patients with varying degrees of diabetes duration, metabolic control, and in the presence or absence of DR. Although there are no clear-cut outcomes from these clinical studies, there is mounting evidence that some EPC sub-types may be involved in the pathogenesis of DR and may also serve as biomarkers for disease progression and stratification. Moreover, some EPC sub-types have considerable potential as therapeutic modalities for DME and PDR in the context of cell therapy. This study presents basic clinical concepts of DR and combines this with a general insight on EPCs and their relation to future directions in understanding and treating this important diabetic complication.
Resumo:
Parallel robot (PR) is a mechanical system that utilized multiple computer-controlled limbs to support one common platform or end effector. Comparing to a serial robot, a PR generally has higher precision and dynamic performance and, therefore, can be applied to many applications. The PR research has attracted a lot of attention in the last three decades, but there are still many challenging issues to be solved before achieving PRs’ full potential. This chapter introduces the state-of-the-art PRs in the aspects of synthesis, design, analysis, and control. The future directions will also be discussed at the end.
Resumo:
Purpose of review: Gene polymorphism studies are growing at a quasiexponential rate and aim to improve immediate and long-term outcomes in renal transplantation. This review highlights recent evidence and potential future directions for genetic research studies.
Recent findings: Studies are largely based on immunity, inflammation and pharmacogenetics, investigating mostly 'surrogate' outcomes with sometimes conflicting results. However, the last 12 months has also heralded the emergence of important genome-wide association studies on transplantation, more robust replicated multicentre analyses of candidate gene variants, meta-analyses, and an increasing interest in copy number variation and donor genetics.
Summary: These studies set the scene for further investigation, aiming to understand pathways of disease and biomarkers of risk, and are leading to a greater understanding of the biology of transplantation. Future studies will require focus on donor : recipient and gene : environment interactions, and an integrated approach of 'transplantomics' to evaluate long-term outcomes in multinational collaborations.
Resumo:
This book explores the role of evangelicalism in the conflict in Northern Ireland and discusses how it may contribute to a peaceful transition. Ganiel analyses the 'traditional' evangelicals who are associated with the Rev. Ian Paisley, as well as a new breed of 'mediating' evangelicals who have broken with the traditions of the past. Comparing evangelical politics in Northern Ireland to the US and Canada, this book sheds light on future directions for Northern Irish evangelicalism. The conclusion has global reverberations as it reflects on the place of 'strong' religions -- such as evangelicalism and other forms of fundamentalism -- in contemporary world politics.
Resumo:
SIGNIFICANCE: Heme degradation, which was described more than 30 years ago, is still very actively explored with many novel discoveries on its role in various disease models every year.
RECENT ADVANCES: The heme oxygenases (HO) are metabolic enzymes that utilize NADPH and oxygen to break apart the heme moiety liberating biliverdin (BV), carbon monoxide (CO), and iron. Heme that is derived from hemoproteins can be toxic to the cells and if not removed immediately, it causes cell apoptosis and local inflammation. Elimination of heme from the milieu enables generation of three products that influences numerous metabolic changes in the cell.
CRITICAL ISSUES: CO has profound effects on mitochondria and cellular respiration and other hemoproteins to which it can bind and affect their function, while BV and bilirubin (BR), the substrate and product of BV, reductase, respectively, are potent antioxidants. Sequestration of iron into ferritin and its recycling in the tissues is a part of the homeodynamic processes that control oxidation-reduction in cellular metabolism. Further, heme is an important component of a number of metabolic enzymes, and, therefore, HO-1 plays an important role in the modulation of cellular bioenergetics.
FUTURE DIRECTIONS: In this review, we describe the cross-talk between heme oxygenase-1 (HO-1) and its products with other metabolic pathways. HO-1, which we have labeled Nike, the goddess who personified victory, dictates triumph over pathophysiologic conditions, including diabetes, ischemia, and cancer.
Resumo:
In the present study, native Spanish speakers were taught a small English vocabulary (Spanish-to-English intraverbals). Four different training conditions were created by combining textual and echoic prompts with written and vocal target responses. The efficiency of each training condition was examined by analysing emergent relations (i.e., tacts) and the total number of sessions required to reach mastery under each training condition. All combinations of prompt-response modalities generated increases in correct responding on tests for emergent relations but when target responses were written, mastery criterion was reached faster. Results are discussed in terms of efficiency for emergent relations and recommendations for future directions are provided.
Resumo:
Pancreatic adenocarcinoma is the fourth leading cause of cancer death and has an extremely poor prognosis: The 5-year survival probability is less than 5% for all stages. The only chance for cure or longer survival is surgical resection; however, only 10% to 20% of patients have resectable disease. Although surgical techniques have improved, most who undergo complete resection experience a recurrence. Adjuvant systemic therapy reduces the recurrence rate and improves outcomes. There is a potential role for radiation therapy as part of treatment for locally advanced disease, although its use in both the adjuvant and neoadjuvant settings remains controversial. Palliative systemic treatment is the only option for patients with metastatic disease. To date, however, only the gemcitabine plus erlotinib combination, and recently the FOLFIRINOX regimen, have been associated with relatively small but statistically significant improvements in OS when compared directly with gemcitabine alone. Although several meta-analyses have suggested a benefit associated with combination chemotherapy, whether this benefit is clinically meaningful remains unclear, particularly in light of the enhanced toxicity associated with combination regimens. There is growing evidence that the exceptionally poor prognosis in PC is caused by the tumor's characteristic abundant desmoplastic stroma that plays a critical role in tumor cell growth, invasion, metastasis, and chemoresistance. Carefully designed clinical trials that include translational analysis will provide a better understanding of the tumor biology and its relation to the host stromal cells. Future directions will involve testing of new targeted agents, understanding the pharmacodynamics of our current targeted agents, searching for predictive and prognostic biomarkers, and exploring the efficacy of different combinations strategies.
Resumo:
Diagnosis of glaucoma and delivery of effective treatment is difficult everywhere, but additional challenges are evident in less affluent parts of the world, where the largest numbers of patients with this disease are living. The problems of providing good glaucoma care are examined with especial reference to south-east Asia including China and India and countries in sub-Saharan Africa. The relatively low priority given to glaucoma by vision-related and other nongovernmental organizations (NGOs) due to difficulties faced in delivering effective glaucoma screening and therapeutic interventions are discussed, together with possible future directions for increasing resources and priority for glaucoma care in poor areas.
Resumo:
The advent of high-power laser facilities has, in the past two decades, opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, while preserving the essential physics. This is due to the invariance of the equations of magneto-hydrodynamics to a class of similarity transformations. Here we review the relevant scaling relations and their application in laboratory astrophysics experiments with a focus on the generation and amplification of magnetic fields in cosmic environment. The standard model for the origin of magnetic fields is a multi stage process whereby a vanishing magnetic seed is first generated by a rotational electric field and is then amplified by turbulent dynamo action to the characteristic values observed in astronomical bodies. We thus discuss the relevant seed generation mechanisms in cosmic environment including resistive mechanism, collision-less and fluid instabilities, as well as novel laboratory experiments using high power laser systems aimed at investigating the amplification of magnetic energy by magneto-hydrodynamic (MHD) turbulence. Future directions, including efforts to model in the laboratory the process of diffusive shock acceleration are also discussed, with an emphasis on the potential of laboratory experiments to further our understanding of plasma physics on cosmic scales.
Resumo:
Diabetes Distress is a rational emotional response to the threat of a life-changing illness. Distinct from depression, it is rooted in the demands of diabetes management and is a product of psychological adjustment. Diabetes distress has been found to be significantly associated with HbA1c and self-care, which demonstrates its clinical use in treatment outcomes. Interpersonal factors such as perceived support and protectiveness of partners significantly contribute to elevated distress, suggesting that these are valued areas of focus for interventions. Pioneering large-scale research, DAWN2, gives voices to the families of those with diabetes and reaffirms the need to consider psychosocial factors in routine diabetes care. Structured diabetes education programmes are the most widely used in helping individuals cope with diabetes, but they fail to consider the psychological or interpersonal aspects of diabetes management. Psycho-educational approaches are found to be effective in reducing diabetes distress while also improving HbA1c. Certain limitations in the current literature are discussed, along with future directions. Of utmost importance is the need for health practitioners, irrespective of background, to demonstrate an understanding of diabetes distress and actively engage in discussion with individuals struggling to cope with diabetes; to normalize this and integrate it into routine diabetes practice.