60 resultados para folk belief
Resumo:
This paper studies the impact of belief elicitation on informational efficiency and individual behavior in experimental parimutuel betting markets. In one treatment, groups of eight participants, who possess a private signal about the eventual outcome, play a sequential betting game. The second treatment is identical, except that bettors are observed by eight other participants who submit incentivized beliefs about the winning probabilities of each outcome. In the third treatment, the same individuals make bets and assess the winning probabilities of the outcomes. Market probabilities more accurately reflect objective probabilities in the third than in the other two treatments. Submitting beliefs reduces the favorite-longshot bias and making bets improves the accuracy of elicited beliefs. A level-k framework provides some insights about why belief elicitation improves the capacity of betting markets to aggregate information. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this paper we present a generalization of belief functions over fuzzy events. In particular we focus on belief functions defined in the algebraic framework of finite MV-algebras of fuzzy sets. We introduce a fuzzy modal logic to formalize reasoning with belief functions on many-valued events. We prove, among other results, that several different notions of belief functions can be characterized in a quite uniform way, just by slightly modifying the complete axiomatization of one of the modal logics involved in the definition of our formalism. © 2012 Elsevier Inc. All rights reserved.
Resumo:
Prostatic intraepithelial neoplasia (PIN) diagnosis and grading are affected by uncertainties which arise from the fact that almost all knowledge of PIN histopathology is expressed in concepts, descriptive linguistic terms, and words. A Bayesian belief network (BBN) was therefore used to reduce the problem of uncertainty in diagnostic clue assessment, while still considering the dependences between elements in the reasoning sequence. A shallow network was used with an open-tree topology, with eight first-level descendant nodes for the diagnostic clues (evidence nodes), each independently linked by a conditional probability matrix to a root node containing the diagnostic alternatives (decision node). One of the evidence nodes was based on the tissue architecture and the others were based on cell features. The system was designed to be interactive, in that the histopathologist entered evidence into the network in the form of likelihood ratios for outcomes at each evidence node. The efficiency of the network was tested on a series of 110 prostate specimens, subdivided as follows: 22 cases of non-neoplastic prostate or benign prostatic tissue (NP), 22 PINs of low grade (PINlow), 22 PINs of high grade (PINhigh), 22 prostatic adenocarcinomas with cribriform pattern (PACcri), and 22 prostatic adenocarcinomas with large acinar pattern (PAClgac). The results obtained in the benign and malignant categories showed that the belief for the diagnostic alternatives is very high, the values being in general more than 0.8 and often close to 1.0. When considering the PIN lesions, the network classified and graded most of the cases with high certainty. However, there were some cases which showed values less than 0.8 (13 cases out of 44), thus indicating that there are situations in which the feature changes are intermediate between contiguous categories or grades. Discrepancy between morphological grading and the BBN results was observed in four out of 44 PIN cases: one PINlow was classified as PINhigh and three PINhigh were classified as PINlow. In conclusion, the network can grade PlN lesions and differentiate them from other prostate lesions with certainty. In particular, it offers a descriptive classifier which is readily implemented and which allows the use of linguistic, fuzzy variables.
Resumo:
Aim-To develop an expert system model for the diagnosis of fine needle aspiration cytology (FNAC) of the breast.
Methods-Knowledge and uncertainty were represented in the form of a Bayesian belief network which permitted the combination of diagnostic evidence in a cumulative manner and provided a final probability for the possible diagnostic outcomes. The network comprised 10 cytological features (evidence nodes), each independently linked to the diagnosis (decision node) by a conditional probability matrix. The system was designed to be interactive in that the cytopathologist entered evidence into the network in the form of likelihood ratios for the outcomes at each evidence node.
Results-The efficiency of the network was tested on a series of 40 breast FNAC specimens. The highest diagnostic probability provided by the network agreed with the cytopathologists' diagnosis in 100% of cases for the assessment of discrete, benign, and malignant aspirates. A typical probably benign cases were given probabilities in favour of a benign diagnosis. Suspicious cases tended to have similar probabilities for both diagnostic outcomes and so, correctly, could not be assigned as benign or malignant. A closer examination of cumulative belief graphs for the diagnostic sequence of each case provided insight into the diagnostic process, and quantitative data which improved the identification of suspicious cases.
Conclusion-The further development of such a system will have three important roles in breast cytodiagnosis: (1) to aid the cytologist in making a more consistent and objective diagnosis; (2) to provide a teaching tool on breast cytological diagnosis for the non-expert; and (3) it is the first stage in the development of a system capable of automated diagnosis through the use of expert system machine vision.
Resumo:
This paper explores semi-qualitative probabilistic networks (SQPNs) that combine numeric and qualitative information. We first show that exact inferences with SQPNs are NPPP-Complete. We then show that existing qualitative relations in SQPNs (plus probabilistic logic and imprecise assessments) can be dealt effectively through multilinear programming. We then discuss learning: we consider a maximum likelihood method that generates point estimates given a SQPN and empirical data, and we describe a Bayesian-minded method that employs the Imprecise Dirichlet Model to generate set-valued estimates.
Resumo:
This article examines the evaluative nature of the folk concepts of weakness and strength of will and hypothesizes that their evaluative nature is strongly connected to the folk concepts of blame and credit. We probed how people apply the concepts of weakness and strength of will to prototypical and non-prototypical scenarios. While regarding prototypical scenarios the great majority applied these concepts according to the predictions following from traditional philosophical analyses, when presented with non-prototypical scenarios, people were divided. Some, against traditional analyses, did not apply these concepts, which we explain in terms of a clash of evaluations involving different sorts of blame and credit. Others applied them according to traditional analyses, which we explain in terms of a disposition to be reflective and clearly set apart the different sorts of blame and credit involved. Still others applied them in an inverse way, seemingly bypassing the traditional components resolution and best judgment, which we explain in terms of a reinterpretation of the scenarios driven by an assumption that everyone knows deep inside that the best thing to do is to act morally. This division notwithstanding, we claim that our results are largely supportive of traditional analyses (qua analyses of folk concepts).
Resumo:
Belief merging operators combine multiple belief bases (a profile) into a collective one. When the conjunction of belief bases is consistent, all the operators agree on the result. However, if the conjunction of belief bases is inconsistent, the results vary between operators. There is no formal manner to measure the results and decide on which operator to select. So, in this paper we propose to evaluate the result of merging operators by using three ordering relations (fairness, satisfaction and strength) over operators for a given profile. Moreover, a relation of conformity over operators is introduced in order to classify how well the operator conforms to the definition of a merging operator. By using the four proposed relations we provide a comparison of some classical merging operators and evaluate the results for some specific profiles.
Resumo:
Belief revision performs belief change on an agent’s beliefs when new evidence (either of the form of a propositional formula or of the form of a total pre-order on a set of interpretations) is received. Jeffrey’s rule is commonly used for revising probabilistic epistemic states when new information is probabilistically uncertain. In this paper, we propose a general epistemic revision framework where new evidence is of the form of a partial epistemic state. Our framework extends Jeffrey’s rule with uncertain inputs and covers well-known existing frameworks such as ordinal conditional function (OCF) or possibility theory. We then define a set of postulates that such revision operators shall satisfy and establish representation theorems to characterize those postulates. We show that these postulates reveal common characteristics of various existing revision strategies and are satisfied by OCF conditionalization, Jeffrey’s rule of conditioning and possibility conditionalization. Furthermore, when reducing to the belief revision situation, our postulates can induce Darwiche and Pearl’s postulates C1 and C2.