68 resultados para finite-dimensional quantum systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the grand challenges of contemporary physics is understanding strongly interacting quantum systems comprising such diverse examples as ultracold atoms in traps, electrons in high-temperature superconductors and nuclear matter. Warm dense matter, defined by temperatures of a few electron volts and densities comparable with solids, is a complex state of such interacting matter. Moreover, the study of warm dense matter states has practical applications for controlled thermonuclear fusion, where it is encountered during the implosion phase, and it also represents laboratory analogues of astrophysical environments found in the core of planets and the crusts of old stars, Here we demonstrate how warm dense matter states can be diagnosed and structural properties can be obtained by inelastic X-ray scattering measurements on a compressed lithium sample. Combining experiments and ab initio simulations enables us to determine its microscopic state and to evaluate more approximate theoretical models for the ionic structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we characterise the C*-algebras $\mathcal{A}$ generated by projections with the property that every pair of projections in $\mathcal{A}$ has positive angle, as certain extensions of abelian algebras by algebras of compact operators. We show that this property is equivalent to a lattice theoretic property of projections and also to the property that the set of finite dimensional *-subalgebras of $\mathcal{A}$ is directed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study quantum information flow in a model comprised of a trapped impurity qubit immersed in a Bose-Einstein-condensed reservoir. We demonstrate how information flux between the qubit and the condensate can be manipulated by engineering the ultracold reservoir within experimentally realistic limits. We show that this system undergoes a transition from Markovian to non-Markovian dynamics, which can be controlled by changing key parameters such as the condensate scattering length. In this way, one can realize a quantum simulator of both Markovian and non-Markovian open quantum systems, the latter ones being characterized by a reverse flow of information from the background gas (reservoir) to the impurity (system).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the question on whether the famous Golod–Shafarevich estimate, which gives a lower bound for the Hilbert series of a (noncommutative) algebra, is attained. This question was considered by Anick in his 1983 paper ‘Generic algebras and CW-complexes’, Princeton Univ. Press, where he proved that the estimate is attained for the number of quadratic relations $d\leq n^2/4$
and $d\geq n^2/2$, and conjectured that it is the case for any number of quadratic relations. The particular point where the number of relations is equal to $n(n-1)/2$ was addressed by Vershik. He conjectured that a generic algebra with this number of relations is finite dimensional. We announce here the result that over any infinite field, the Anick conjecture holds for $d \geq 4(n2+n)/9$ and an arbitrary number of generators. We also discuss the result that confirms the Vershik conjecture over any field of characteristic 0, and a series of related
asymptotic results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove that a continuous linear operator T on a topological vector space X with weak topology is mixing if and only if the dual operator T' has no finite dimensional invariant subspaces. This result implies the characterization of hypercyclic operators on the space $\omega$ due to Herzog and Lemmert and implies the result of Bayart and Matheron, who proved that for any hypercyclic operator T on $\omega$, $T\oplus T$ is also hypercyclic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A tuple $(T_1,\dots,T_n)$ of continuous linear operators on a topological vector space $X$ is called hypercyclic if there is $x\in X$ such that the the orbit of $x$ under the action of the semigroup generated by $T_1,\dots,T_n$ is dense in $X$. This concept was introduced by N.~Feldman, who have raised 7 questions on hypercyclic tuples. We answer those 4 of them, which can be dealt with on the level of operators on finite dimensional spaces. In
particular, we prove that the minimal cardinality of a hypercyclic tuple of operators on $\C^n$ (respectively, on $\R^n$) is $n+1$ (respectively, $\frac n2+\frac{5+(-1)^n}{4}$), that there are non-diagonalizable tuples of operators on $\R^2$ which possess an orbit being neither dense nor nowhere dense and construct a hypercyclic 6-tuple of operators on $\C^3$ such that every operator commuting with each member of the tuple is non-cyclic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider two celebrated criteria for defining the nonclassicality of bipartite bosonic quantum systems, the first stemming from information theoretic concepts and the second from physical constraints on the quantum phase space. Consequently, two sets of allegedly classical states are singled out: (i) the set C composed of the so-called classical-classical (CC) states—separable states that are locally distinguishable and do not possess quantum discord; (ii) the set P of states endowed with a positive P representation (P-classical states)—mixtures of Glauber coherent states that, e.g., fail to show negativity of their Wigner function. By showing that C and P are almost disjoint, we prove that the two defining criteria are maximally inequivalent. Thus, the notions of classicality that they put forward are radically different. In particular, generic CC states show quantumness in their P representation, and vice versa, almost all P-classical states have positive quantum discord and, hence, are not CC. This inequivalence is further elucidated considering different applications of P-classical and CC states. Our results suggest that there are other quantum correlations in nature than those revealed by entanglement and quantum discord.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the entanglement of two impurity qubits immersed in a Bose-Einstein condensate (BEC) reservoir. This open quantum system model allows for interpolation between a common dephasing scenario and an independent dephasing scenario by modifying the wavelength of the superlattice superposed to the BEC, and how this influences the dynamical properties of the impurities. We demonstrate the existence of rich dynamics corresponding to different values of reservoir parameters, including phenomena such as entanglement trapping, revivals of entanglement, and entanglement generation. In the spirit of reservoir engineering, we present the optimal BEC parameters for entanglement generation and trapping, showing the key role of the ultracold-gas interactions. Copyright (C) EPLA, 2013

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the entanglement distillability properties of thermal states of many-body systems Following the ideas presented in [6, A Ferraro et al., Phys. Rev Lett 100, 080502 (2008)], we first discuss the appearance of bound entanglement in those systems satisfying an entanglement area law Then, we extend these results to other topologies, not necessarily satisfying an entanglement area law We also study whether bound entanglement survives in the macroscopic limit of an infinite number of particles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study work extraction from the Dicke model achieved using simple unitary cyclic transformations keeping into account both a non optimal unitary protocol, and the energetic cost of creating the initial state. By analyzing the role of entanglement, we find that highly entangled states can be inefficient for energy storage when considering the energetic cost of creating the state. Such surprising result holds notwithstanding the fact that the criticality of the model at hand can sensibly improve the extraction of work. While showing the advantages of using a many-body system for work extraction, our results demonstrate that entanglement is not necessarily advantageous for energy storage purposes, when non optimal processes are considered. Our work shows the importance of better understanding the complex interconnections between non-equilibrium thermodynamics of quantum systems and correlations among their subparts.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A theory of strongly interacting Fermi systems of a few particles is developed. At high excit at ion energies (a few times the single-parti cle level spacing) these systems are characterized by an extreme degree of complexity due to strong mixing of the shell-model-based many-part icle basis st at es by the residual two- body interaction. This regime can be described as many-body quantum chaos. Practically, it occurs when the excitation energy of the system is greater than a few single-particle level spacings near the Fermi energy. Physical examples of such systems are compound nuclei, heavy open shell atoms (e.g. rare earths) and multicharged ions, molecules, clusters and quantum dots in solids. The main quantity of the theory is the strength function which describes spreading of the eigenstates over many-part icle basis states (determinants) constructed using the shell-model orbital basis. A nonlinear equation for the strength function is derived, which enables one to describe the eigenstates without diagonalization of the Hamiltonian matrix. We show how to use this approach to calculate mean orbital occupation numbers and matrix elements between chaotic eigenstates and introduce typically statistical variable s such as t emperature in an isolated microscopic Fermi system of a few particles.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We describe some unsolved problems of current interest; these involve quantum critical points in
ferroelectrics and problems which are not amenable to the usual density functional theory, nor to
classical Landau free energy approaches (they are kinetically limited), nor even to the Landau–
Kittel relationship for domain size (they do not satisfy the assumption of infinite lateral diameter)
because they are dominated by finite aperiodic boundary conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Distributed quantum information processing (QIP) is a promising way to bypass problems due to unwanted interactions between elements. However, this strategy presupposes the engineering of protocols for remote processors. In many of them, pairwise entanglement is a key resource. We study a model which distributes entanglement among elements of a delocalized network without local control. The model is efficient both in finite- and infinite-dimensional Hilbert spaces. We suggest a setup of electromechanical systems to implement our proposal.