280 resultados para fast electrons
Resumo:
Context. The jets of compact accreting objects are composed of electrons and a mixture of positrons and ions. These outflows impinge on the interstellar or intergalactic medium and both plasmas interact via collisionless processes. Filamentation (beam-Weibel) instabilities give rise to the growth of strong electromagnetic fields. These fields thermalize the interpenetrating plasmas.
Aims. Hitherto, the effects imposed by a spatial non-uniformity on filamentation instabilities have remained unexplored. We examine the interaction between spatially uniform background electrons and a minuscule cloud of electrons and positrons. The cloud size is comparable to that created in recent laboratory experiments and such clouds may exist close to internal and external shocks of leptonic jets. The purpose of our study is to determine the prevalent instabilities, their ability to generate electromagnetic fields and the mechanism, by which the lepton micro-cloud transfers energy to the background plasma.
Methods. A square micro-cloud of equally dense electrons and positrons impinges in our particle-in-cell (PIC) simulation on a spatially uniform plasma at rest. The latter consists of electrons with a temperature of 1 keV and immobile ions. The initially charge- and current neutral micro-cloud has a temperature of 100 keV and a side length of 2.5 plasma skin depths of the micro-cloud. The side length is given in the reference frame of the background plasma. The mean speed of the micro-cloud corresponds to a relativistic factor of 15, which is relevant for laboratory experiments and for relativistic astrophysical outflows. The spatial distributions of the leptons and of the electromagnetic fields are examined at several times.
Results. A filamentation instability develops between the magnetic field carried by the micro-cloud and the background electrons. The electromagnetic fields, which grow from noise levels, redistribute the electrons and positrons within the cloud, which boosts the peak magnetic field amplitude. The current density and the moduli of the electromagnetic fields grow aperiodically in time and steadily along the direction that is anti-parallel to the cloud's velocity vector. The micro-cloud remains conjoined during the simulation. The instability induces an electrostatic wakefield in the background plasma.
Conclusions. Relativistic clouds of leptons can generate and amplify magnetic fields even if they have a microscopic size, which implies that the underlying processes can be studied in the laboratory. The interaction of the localized magnetic field and high-energy leptons will give rise to synchrotron jitter radiation. The wakefield in the background plasma dissipates the kinetic energy of the lepton cloud. Even the fastest lepton micro-clouds can be slowed down by this collisionless mechanism. Moderately fast charge- and current neutralized lepton micro-clouds will deposit their energy close to relativistic shocks and hence they do not constitute an energy loss mechanism for the shock.
Resumo:
Our objective was to study whether “compensatory” models provide better descriptions of clinical judgment than fast and frugal models, according to expertise and experience. Fifty practitioners appraised 60 vignettes describing a child with an exacerbation of asthma and rated their propensities to admit the child. Linear logistic (LL) models of their judgments were compared with a matching heuristic (MH) model that searched available cues in order of importance for a critical value indicating an admission decision. There was a small difference between the 2 models in the proportion of patients allocated correctly (admit or not-admit decisions), 91.2% and 87.8%, respectively. The proportion allocated correctly by the LL model was lower for consultants than juniors, whereas the MH model performed equally well for both. In this vignette study, neither model provided any better description of judgments made by consultants or by pediatricians compared to other grades and specialties.
Resumo:
The identification of nonlinear dynamic systems using linear-in-the-parameters models is studied. A fast recursive algorithm (FRA) is proposed to select both the model structure and to estimate the model parameters. Unlike orthogonal least squares (OLS) method, FRA solves the least-squares problem recursively over the model order without requiring matrix decomposition. The computational complexity of both algorithms is analyzed, along with their numerical stability. The new method is shown to require much less computational effort and is also numerically more stable than OLS.
Resumo:
The triple-differential cross section for ionization of a heavy atom is shown to depend on the spin of the incident electron even if this is polarized entirely parallel or antiparallel to its direction of propagation, the atom is unpolarized, and the spins of the ejected electrons are not resolved. Quantitative predictions for the spin asymmetry are presented in a relativistic distorted-wave Born approximation. Simple physical models are introduced to understand both these results and further symmetry properties involving the reversal of a spatial momentum component also.
Resumo:
The effects of electron correlation and second-order terms on theoretical total cross sections of transfer ionization in collisions of the helium atom with fast H+, He2+ and Li3+ ions are studied and reported. The total cross sections are calculated using highly correlated wavefunctions with expansion of the transition amplitude in the Born series through the second order. The results of these calculations are in sensible agreement with experimental data.
Resumo:
Impulsively generated short-period fast magneto-acoustic wave trains, guided by solar and stellar coronal loops, are numerically modelled. In the developed stage of the evolution, the wave trains have a characteristic quasi-periodic signature. The quasi-periodicity results from the geometrical dispersion of the guided fast modes, determined by the transverse profile of the loop. A typical feature of the signature is a tadpole wavelet Spectrum: a narrow-spectrum tail precedes a broad-band head. The instantaneous period of the oscillations in the wave train decreases gradually with time. The period and the spectral amplitude evolution are shown to be determined by the steepness of the transverse density profile and the density contrast ratio in the loop. The propagating wave trains recently discovered with the Solar Eclipse Coronal Imaging System (SECIS) instrument are noted to have similar wavelet spectral features, which strengthens the interpretation of SECIS results as guided fast wave trains.
Resumo:
Results are presented of high-resolution scattering experiments involving electron collisions with CO2 and CS2, between a few meV and 200 meV impact energy. Virtual state scattering is shown to dominate the low-energy behaviour for both species. The most striking features of the scattering spectrum for CS2 are, however, giant resonances with cross sections greater by more than an order of magnitude than those generally encountered in low-energy scattering. A strong feature centred at 15 meV is attributed to the involvement of CS2- and is interpreted to be a consequence of the virtual state effect.
Resumo:
The scattering of electrons with kinetic energies down to a few meV by para-xylene and para-difluorobenzene has been observed experimentally with an electron beam energy resolution of 0.95 to 1.5 meV (full width half maximum). At low electron energies the collisions can be considered as cold scattering events because the de Broglie wavelength of the electron is considerably larger than the target dimensions. The scattering cross sections measured rise rapidly at low energy due to virtual state scattering. The nature of this scattering process is discussed using s- and p-wave phase shifts derived from the experimental data. Scattering lengths are derived of, respectively, -9.5+/-0.5 and -8.0+/-0.5 a.u. for para-xylene and para-difluorobenzene. The virtual state effect is interpreted in terms of nuclear diabatic and partially adiabatic models, involving the electronic and vibronic symmetries of the unoccupied orbitals in the target species. The concept of direct and indirect virtual state scattering is introduced, through which the present species, in common with carbon dioxide and benzene, scatter through an indirect virtual state process, whereas other species, such as perfluorobenzene, scatter through a direct process. (C) 2005 American Institute of Physics.