62 resultados para exponential
Resumo:
Aims: To characterize the population pharmacokinetics of ranitidine in critically ill children and to determine the influence of various clinical and demographic factors on its disposition. Methods: Data were collected prospectively from 78 paediatric patients (n = 248 plasma samples) who received oral or intravenous ranitidine for prophylaxis against stress ulcers, gastrointestinal bleeding or the treatment of gastro-oesophageal reflux. Plasma samples were analysed using high-performance liquid chromatography, and the data were subjected to population pharmacokinetic analysis using nonlinear mixed-effects modelling. Results: A one-compartment model best described the plasma concentration profile, with an exponential structure for interindividual errors and a proportional structure for intra-individual error. After backward stepwise elimination, the final model showed a significant decrease in objective function value (-12.618; P <0.001) compared with the weight-corrected base model. Final parameter estimates for the population were 32.1lh for total clearance and 285l for volume of distribution, both allometrically modelled for a 70kg adult. Final estimates for absorption rate constant and bioavailability were 1.31h and 27.5%, respectively. No significant relationship was found between age and weight-corrected ranitidine pharmacokinetic parameters in the final model, with the covariate for cardiac failure or surgery being shown to reduce clearance significantly by a factor of 0.46. Conclusions: Currently, ranitidine dose recommendations are based on children's weights. However, our findings suggest that a dosing scheme that takes into consideration both weight and cardiac failure/surgery would be more appropriate in order to avoid administration of higher or more frequent doses than necessary.
Resumo:
It has long been accepted that thermal and moisture regimes within stonework exert a major influence upon patterns of salt movement and, subsequently, the type and severity of salt-induced decay. For example, it is suggested that slow drying is more likely to bring dissolved salts to the surface, whereas rapid drying could result in the retention of some salt at or near the frequent wetting depth. In reality however, patterns of heating, cooling and surface wetting regimes that drive them – are complex and inconsistent responses to a wide range of environmental controls. As a first step to understanding the complexity of these relationships, this paper reports a series of experiments within a climatic cabinet designed to replicate the effects of short-term temperature fluctuations on the surface and sub-surface temperature regimes of a porous Jurassic limestone, and how they are influenced by surface wetting, ambient temperature and surface airflow. Preliminary results confirm the significance of very steep temperature/stress gradients within the outer centimetre or less of exposed stone under short-duration cycles of heating and cooling. This is important because this is the zone in which many stone decay processes, particularly salt weathering, operate, these processes invariably respond to temperature and moisture fluctuations, and short-term interruptions to insolation could, for example,
trigger these fluctuations on numerous occasions over a day. The data also indicate that there are complex patterns of temperature reversal with depth that are influenced in their intensity and location by surface wetting and moisture penetration, airflow across the surface and ambient air temperature. The presence of multiple temperature reversals and their variation over the course of heating and cooling phases belies previous assumtions of smooth, exponential increases and decreases in subsurface temperatures in response, for example to diurnal patterns of heating and cooling
Resumo:
Chan and Shapiro showed that each (non-trivial) translation operator acting on the Fréchet space of entire functions endowed with the topology of locally uniform convergence supports a universal function of exponential type zero. We show the existence of d-universal functions of exponential type zero for arbitrary finite tuples of pairwise distinct translation operators. We also show that every separable infinite-dimensional Fréchet space supports an arbitrarily large finite and commuting disjoint mixing collection of operators. When this space is a Banach space, it supports an arbitrarily large finite disjoint mixing collection of C0-semigroups. We also provide an easy proof of the result of Salas that every infinite-dimensional Banach space supports arbitrarily large tuples of dual d-hypercyclic operators, and construct an example of a mixing Hilbert space operator T so that (T,T2) is not d-mixing.
Resumo:
The formation of arsenic-phytochelatin (As-PC) complexes is thought to be part of the plant detoxification strategy for arsenic. This work examines (i) the arsenic (As) concentration-dependent formation of As-PC complex formation and (ii) redistribution and metabolism of As after arrested As uptake in Helianthus annuus. HPLC with parallel ICP-MS/ES-MS detection was used to identify and quantify the species present in plant extracts exposed to arsenate (As(V)) (between 0 and 66.7 micromol As l-1 for 24 h). At As concentrations below the EC50 value for root growth (22 micromol As l-1) As uptake is exponential, but it is reduced at concentrations above. Translocation between root and shoot seemed to be limited to the uptake phase of arsenic. No redistribution of As between root and shoot was observed after arresting As exposure. The formation of As-PC complexes was concentration-dependent. The amount and number of As-PC complexes increased exponentially with concentration up to 13.7 micromol As l-1. As(III)-PC3 and GS-As(III)-PC2 complexes were the dominant species in all samples. The ratio of PC-bound As to unbound As increased up to 1.3 micromol As l-1 and decreased at higher concentrations. Methylation of inorganic As was only a minor pathway in H. annuus with about 1% As methylated over a 32 d period. The concentration dependence of As-PC complex formation, amount of unbound reduced and oxidized PC2, and the relative uptake rate showed that As starts to influence the cellular metabolism of H. annuus negatively at As concentrations well below the EC50 value determined by more traditional means. Generally, As-PC complexes and PC-synthesis rate seem to be the more sensitive parameters to be studied when As toxicity values are to be estimated.
Resumo:
The influence of liming on rhizosphere microbial biomass C and incorporation of root exudates was studied in the field by in situ pulse labelling of temperate grassland vegetation with (13)CO(2) for a 3-day period. In plots that had been limed (CaCO(3) amended) annually for 3 years, incorporation into shoots and roots was, respectively, greater and lower than in unlimed plots. Analysis of chloroform-labile C demonstrated lower levels of (13)C incorporation into microbial biomass in limed soils compared to unlimed soils. The turnover of the recently assimilated (13)C compounds was faster in microbial biomass from limed than that from unlimed soils, suggesting that liming increases incorporation by microbial communities of root exudates. An exponential decay model of (13)C in total microbial biomass in limed soils indicated that the half-life of the tracer within this carbon pool was 4.7 days. Results are presented and discussed in relation to the absolute values of (13)C fixed and allocated within the plant-soil system.
Resumo:
lux-marked biosensors for assessing the toxicity and bioremediation potential of polluted environments may complement traditional chemical techniques. luxCDABE genes were introduced into the chromosome of the 2,4-dichlorophenol (2,4-DCP)-mineralizing bacterium, Burkholderia sp. RASC c2, by biparental mating using the Tn4431 system. Experiments revealed that light output was constitutive and related to cell biomass concentration during exponential growth. The transposon insertion was stable and did not interrupt 2,4-DCP-degradative genes, and expression of luxCDABE did not constitute a metabolic burden to the cell. A bioluminescence response was detectable at sublethal 2,4-DCP concentrations: at <10.26 microg ml(-1), bioluminescence was stimulated (e.g. 218% of control), but at concentrations >60 microg ml(-1) it declined to <1%. Investigating the effect of [14C]-2,4-DCP concentration on the evolution of 14CO2 revealed that, for initial concentrations of 2.5-25 microg ml(-1), approximately equals 55% of the added 14C was mineralized after 24 h compared with
Resumo:
Architects use cycle-by-cycle simulation to evaluate design choices and understand tradeoffs and interactions among design parameters. Efficiently exploring exponential-size design spaces with many interacting parameters remains an open problem: the sheer number of experiments renders detailed simulation intractable. We attack this problem via an automated approach that builds accurate, confident predictive design-space models. We simulate sampled points, using the results to teach our models the function describing relationships among design parameters. The models produce highly accurate performance estimates for other points in the space, can be queried to predict performance impacts of architectural changes, and are very fast compared to simulation, enabling efficient discovery of tradeoffs among parameters in different regions. We validate our approach via sensitivity studies on memory hierarchy and CPU design spaces: our models generally predict IPC with only 1-2% error and reduce required simulation by two orders of magnitude. We also show the efficacy of our technique for exploring chip multiprocessor (CMP) design spaces: when trained on a 1% sample drawn from a CMP design space with 250K points and up to 55x performance swings among different system configurations, our models predict performance with only 4-5% error on average. Our approach combines with techniques to reduce time per simulation, achieving net time savings of three-four orders of magnitude. Copyright © 2006 ACM.
Resumo:
Burkholderia cenocepacia is a Gram-negative aerobic bacterium that belongs to a group of opportunistic pathogens displaying diverse environmental and pathogenic lifestyles. B. cenocepacia is known for its ability to cause lung infections in people with cystic fibrosis and it possesses a large 8?Mb multireplicon genome encoding a wide array of pathogenicity and fitness genes. Transcriptomic profiling across nine growth conditions was performed to identify the global gene expression changes made when B. cenocepacia changes niches from an environmental lifestyle to infection. In comparison to exponential growth, the results demonstrated that B. cenocepacia changes expression of over one-quarter of its genome during conditions of growth arrest, stationary phase and surprisingly, under reduced oxygen concentrations (6% instead of 20.9% normal atmospheric conditions). Multiple virulence factors are upregulated during these growth arrest conditions. A unique discovery from the comparative expression analysis was the identification of a distinct, co-regulated 50-gene cluster that was significantly upregulated during growth under low oxygen conditions. This gene cluster was designated the low-oxygen-activated (lxa) locus and encodes six universal stress proteins and proteins predicted to be involved in metabolism, transport, electron transfer and regulation. Deletion of the lxa locus resulted in B. cenocepacia mutants with aerobic growth deficiencies in minimal medium and compromised viability after prolonged incubation in the absence of oxygen. In summary, transcriptomic profiling of B. cenocepacia revealed an unexpected ability of aerobic Burkholderia to persist in the absence of oxygen and identified the novel lxa locus as key determinant of this important ecophysiological trait.
Resumo:
Efficiently exploring exponential-size architectural design spaces with many interacting parameters remains an open problem: the sheer number of experiments required renders detailed simulation intractable.We attack this via an automated approach that builds accurate predictive models. We simulate sampled points, using results to teach our models the function describing relationships among design parameters. The models can be queried and are very fast, enabling efficient design tradeoff discovery. We validate our approach via two uniprocessor sensitivity studies, predicting IPC with only 1–2% error. In an experimental study using the approach, training on 1% of a 250-K-point CMP design space allows our models to predict performance with only 4–5% error. Our predictive modeling combines well with techniques that reduce the time taken by each simulation experiment, achieving net time savings of three-four orders of magnitude.
Resumo:
Systematic experiments have been carried out on the thermal and rheological behaviour of the ionic liquid, 1-butyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl} imide, [C(4)mim][NTf2], and, for the first time, on the forced convective heat transfer of an ionic liquid under the laminar flow conditions. The results show that the thermal conductivity of the ionic liquid is similar to 0.13 W m(-1) K-1, which is almost independent of temperature between 25 and 40 degrees C. Rheological measurements show that the [C(4)mim][NTf2] liquid is a Newtonian fluid with its shear viscosity decreasing with increasing temperature according to the exponential law over a temperature range of 20-90 degrees C. The convective heat transfer experiments demonstrate that the thermal entrance length of the ionic liquid is very large due to its high viscosity and low thermal conductivity. The convective heat transfer coefficient is observed to be much lower than that of distilled water under the same conditions. The convective heat transfer data are also found to fit well to the convectional Shah's equation under the conditions of this work. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
We present the one-year long observing campaign of SN 2012A which exploded in the nearby (9.8 Mpc) irregular galaxy NGC 3239. The photometric evolution is that of a normal type IIP supernova. The absolute maximum magnitude, with MB = -16.23 +- 0.16 mag. SN2012A reached a peak luminosity of about 2X10**42 erg/s, which is brighter than those of other SNe with a similar 56Ni mass. The latter was estimated from the luminosity in the exponential tail of the light curve and found to be M(56Ni) = 0.011 +-0.004 Msun. The spectral evolution of SN 2012A is also typical of SN IIP, from the early spectra dominated by a blue continuum and very broad (~10**4 km/s) Balmer lines, to the late-photospheric spectra characterized by prominent P-Cygni features of metal lines (Fe II, Sc II, Ba II, Ti II, Ca II, Na ID). The photospheric velocity is moderately low, ~3X10**3 km/s at 50 days, for the low optical depth metal lines. The nebular spectrum obtained 394 days after the shock breakout shows the typical features of SNe IIP and the strength of the [O I] doublet suggests a progenitor of intermediate mass, similar to SN 2004et (~15 Msun). A candidate progenitor for SN 2012A has been identified in deep, pre-explosion K'-band Gemini North (NIRI) images, and found to be consistent with a star with a bolometric magnitude -7.08+-0.36 (log L/Lsun = 4.73 +- 0.14$ dex). The magnitude of the recovered progenitor in archival images points toward a moderate-mass 10.5 (-2/+4.5) Msun star as the precursor of SN 2012A. The explosion parameters and progenitor mass were also estimated by means of a hydrodynamical model, fitting the bolometric light curve, the velocity and the temperature evolution. We found a best fit for a kinetic energy of 0.48 foe, an initial radius of 1.8X10**13 cm and ejecta mass of 12.5 Msun.
Resumo:
We investigate the violation of local realism in Bell tests involving homodyne measurements performed on multimode continuous-variable states. By binning the measurement outcomes in an appropriate way, we prove that the Mermin-Klyshko inequality can be violated by an amount that grows exponentially with the number of modes. Furthermore, the maximum violation allowed by quantum mechanics can be attained for any number of modes, albeit requiring a quantum state whose generation is hardly practicable. Interestingly, this exponential increase of the violation holds true even for simpler states, such as multipartite GHZ states. The resulting benefit of using more modes is shown to be significant in practical multipartite Bell tests by analyzing the increase of the robustness to noise with the number of modes. In view of the high efficiency achievable with homodyne detection, our results thus open a possible way to feasible loophole-free Bell tests that are robust to experimental imperfections. We provide an explicit example of a three-mode state (a superposition of coherent states) which results in a significantly high violation of the Mermin-Klyshko inequality (around 10%) with homodyne measurements.
Resumo:
The exponential growth in user and application data entails new means for providing fault tolerance and protection against data loss. High Performance Com- puting (HPC) storage systems, which are at the forefront of handling the data del- uge, typically employ hardware RAID at the backend. However, such solutions are costly, do not ensure end-to-end data integrity, and can become a bottleneck during data reconstruction. In this paper, we design an innovative solution to achieve a flex- ible, fault-tolerant, and high-performance RAID-6 solution for a parallel file system (PFS). Our system utilizes low-cost, strategically placed GPUs — both on the client and server sides — to accelerate parity computation. In contrast to hardware-based approaches, we provide full control over the size, length and location of a RAID array on a per file basis, end-to-end data integrity checking, and parallelization of RAID array reconstruction. We have deployed our system in conjunction with the widely-used Lustre PFS, and show that our approach is feasible and imposes ac- ceptable overhead.
Resumo:
The relationship between retention loss in single crystal PbTiO3 ferroelectric thin films and leakage currents is demonstrated by piezoresponse and conductive atomic force microscopy measurements. It was found that the polarization reversal in the absence of an electric field followed a stretched exponential behavior 1-exp[-(t/k)(d)] with exponent d>1, which is distinct from a dispersive random walk process with d <. The latter has been observed in polycrystalline films for which retention loss was associated with grain boundaries. The leakage current indicates power law scaling at short length scales, which strongly depends on the applied electric field. Additional information of the microstructure, which contributes to an explanation of the presence of leakage currents, is presented with high resolution transmission electron microscopy analysis.
Resumo:
Mathematical modelling has become an essential tool in the design of modern catalytic systems. Emissions legislation is becoming increasingly stringent, and so mathematical models of aftertreatment systems must become more accurate in order to provide confidence that a catalyst will convert pollutants over the required range of conditions.
Automotive catalytic converter models contain several sub-models that represent processes such as mass and heat transfer, and the rates at which the reactions proceed on the surface of the precious metal. Of these sub-models, the prediction of the surface reaction rates is by far the most challenging due to the complexity of the reaction system and the large number of gas species involved. The reaction rate sub-model uses global reaction kinetics to describe the surface reaction rate of the gas species and is based on the Langmuir Hinshelwood equation further developed by Voltz et al. [1] The reactions can be modelled using the pre-exponential and activation energies of the Arrhenius equations and the inhibition terms.
The reaction kinetic parameters of aftertreatment models are found from experimental data, where a measured light-off curve is compared against a predicted curve produced by a mathematical model. The kinetic parameters are usually manually tuned to minimize the error between the measured and predicted data. This process is most commonly long, laborious and prone to misinterpretation due to the large number of parameters and the risk of multiple sets of parameters giving acceptable fits. Moreover, the number of coefficients increases greatly with the number of reactions. Therefore, with the growing number of reactions, the task of manually tuning the coefficients is becoming increasingly challenging.
In the presented work, the authors have developed and implemented a multi-objective genetic algorithm to automatically optimize reaction parameters in AxiSuite®, [2] a commercial aftertreatment model. The genetic algorithm was developed and expanded from the code presented by Michalewicz et al. [3] and was linked to AxiSuite using the Simulink add-on for Matlab.
The default kinetic values stored within the AxiSuite model were used to generate a series of light-off curves under rich conditions for a number of gas species, including CO, NO, C3H8 and C3H6. These light-off curves were used to generate an objective function.
This objective function was used to generate a measure of fit for the kinetic parameters. The multi-objective genetic algorithm was subsequently used to search between specified limits to attempt to match the objective function. In total the pre-exponential factors and activation energies of ten reactions were simultaneously optimized.
The results reported here demonstrate that, given accurate experimental data, the optimization algorithm is successful and robust in defining the correct kinetic parameters of a global kinetic model describing aftertreatment processes.