75 resultados para excitation energy
Resumo:
Energy levels and radiative rates for transitions among the lowest 24 fine-structure levels belonging to the ls(2) nl (n <5) configurations of Li-like O VI have been calculated using the fully relativistic GRASP code. Additionally, collision strengths for transitions among these levels have been computed over a wide energy range below 63 Ry, using the Dirac Atomic R- matrix Code. Resonances have been resolved in a fine energy mesh in order to calculate the effective collision strengths. Results for radiative rates, collision strengths, and effective collision strengths are presented for all transitions. Comparisons with other available results are made, and the accuracy of the present data is assessed. Energy levels are expected to be accurate to within 1%, while other parameters are probably accurate to better than 20%.
Resumo:
Energy levels and radiative rates for transitions among the lowest 24 fine-structure levels belonging to the ls(2) nl (n <5) configurations of Li-like C IV have been calculated using the fully relativistic GRASP code. Additionally, collision strengths for transitions among these levels have been computed over a wide energy range below 28 Ry, using the Dirac Atomic R- matrix Code. Resonances have been resolved in a fine energy mesh in order to calculate the effective collision strengths. Results for radiative rates, collision strengths, and effective collision strengths are presented for all transitions. Comparisons with other available results are made, and the accuracy of the present data is assessed. Energy levels are expected to be accurate to within 1%, while other parameters are probably accurate to better than 20%.
Resumo:
Energy levels and radiative rates for transitions among the lowest 97 fine-structure levels belonging to the (1s(2) 2s(2) 2p(6)) 3 s(2) 3p(2), 3s3p(3), 3s(2) 3p3d, 3p(4), 3s3p(2) 3d and 3s(2) 3d(2) configurations of Fe XIII have been calculated using the fully relativistic GRASP code. Additionally, collision strengths for transitions among these levels have been computed using the Dirac Atomic R-matrix Code (DARC) of Norrington & Grant (2004). Radiative rates and oscillator strengths are tabulated for all allowed transitions among the 97 fine-structure levels, while collision strengths are reported for some transitions at a few energies above thresholds. Comparisons are made with the available results, and the accuracy of the data is assessed.
Resumo:
Energy levels and radiative rates for transitions among the lowest 60 fine-structure levels belonging to the (1s(2)) 2s(2)2p(5), 2s2p(6), and 2s(2)2p(4)3l configurations of F-like Mo XXXIV have been calculated using the fully relativistic GRASP code. Additionally, collision strengths for transitions among these levels have also been computed over a wide energy range below 3200 Ry. using the Dirac Atomic R-matrix Code. Resonances have been resolved in a fine energy mesh in order to calculate the effective collision strengths. Results for radiative rates, collision strengths, and excitation rates are presented for transitions from the lowest three levels to higher lying states. Comparisons with other available results are made, and the accuracy of the present data is assessed. Energy levels are expected to be accurate to within 1%, while other parameters are probably accurate to better than 20%.
Resumo:
Collision strengths for transitions among the energetically lowest 46 fine-structure levels belonging to the (1s(2)) 2s(2)2p(2), 2s2p(3), 2p(4), and 2s(2)2p3l configurations of Ca XV are computed, over a wide electron energy range below 300 Ryd, using the Dirac Atomic R-matrix Code (DARC) of Norrington & Grant (2003). Resonances in the threshold region have been resolved in a fine energy mesh, and excitation rates are determined over a wide electron temperature range below 10(7) K. The results are compared with those available in the literature, and the accuracy of the data is assessed.
Resumo:
Collision strengths for transitions among the energetically lowest 46 fine-structure levels belonging to the (1s(2)) 2s(2)2p(2), 2s2p(3). 2p(4), 2s(2)2p3s, 2s(2)2p3p and 2s(2)2p3d configurations of Ca XV are computed. over an electron energy range of 50 less than or equal to E less than or equal to 300 Ryd. using the recent Dirac Atomic R-matrix Code (DARC) of Norrington and Grant. All partial waves with J less than or equal to 40.5 have been included, and the contribution of higher partial waves has been added to ensure the convergence of collision strengths for all transitions and at all energies. The results are compared with those available in the literature, and the accuracy of the data is assessed.
Resumo:
Energy levels, radiative rates, collision strengths, and effective collision strengths for all transitions up to and including the n = 5 levels of AlXIII have been computed in the j j coupling scheme including relativistic effects. All partial waves with angular momentum J less than or equal to 60 have been included, and resonances have been resolved in a fine energy grid in the threshold region. Collision strengths are tabulated at energies above thresholds in the range 170.0 less than or equal to E less than or equal to 300.0 Ryd, and results for effective collision strengths, obtained after integrating the collision strengths over a Maxwellian distribution of electron velocities, are tabulated over a wide temperature range of 4.4 less than or equal to log T-e less than or equal to 6.8 K. The importance of including relativistic effects in a calculation is discussed in comparison with the earlier available non-relativistic results.
Resumo:
Collision strengths for all transitions up to and including the n = 5 levels of Al XIII have been computed in the LS coupling scheme using the R-matrix code. All partial waves with angular momentum L less than or equal to 45 have been included, and resonances have been resolved in a fine energy grid in the threshold region. Collision strengths are tabulated at energies above thresholds in the range 162.30 less than or equal to E less than or equal to 220.0 Ry, and results for the 1s-2s and 1s-2p transitions are compared with those of previous authors. Additionally, effective collision strengths, obtained after integrating the collision strengths over a Maxwellian distribution of electron velocities, are tabulated over a wide temperature range of 4.40 less than or equal to log T-e less than or equal to 6.40 K.
Resumo:
Energy levels and radiative rates for transitions among the 107 finestructure levels belonging to the (1s(2)2s(2)2p(6)) 3s(2)3p(6)3d(10), 3s(2)3p(6)3d(9)4l, 3s(2)3p(5)3d(10)4l, and 3s3p(6)3d(10)4l configurations of Ni-like ions with 60 less than or equal to Z less than or equal to 90 have been calculated using the GRASP code. The collision strengths (Omega) have also been computed for transitions in Gd XXXVII at energies below 800 Ryd, using the DARC code. Resonances have been resolved in a fine energy mesh in the threshold region, and excitation rate coefficients have been calculated for transitions from the ground level to excited levels at temperatures below 2500 eV. These have been compared with those available in the literature, and enhancement in the values of rates, due to resonances, has been observed up to an order of magnitude for some of the transitions.
Resumo:
Effective collision strengths for electron-impact excitation of the nitrogen-like ion Si VIII are presented over the wide range of electron temperatures log T(K) = 4.0-6.5. All 231 fine- structure transitions among the 22 fine-structure levels arising from the lowest 11 LS target states (2s(2)2p(3), 2s2p(4), 2p(5), and 2s(2)2p(2)3s) are considered in the tabulation. The collision strengths are evaluated in a multi- channel R-matrix approach, and the corresponding effective collision strengths are obtained by averaging these over a Maxwellian distribution of electron velocities. Comparisons are made with recent distorted-wave results at high incident electron energies. Differences of up to 20% are found, particularly for some allowed transitions. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Aims. In this paper we report calculations for energy levels, radiative rates, collision strengths, and effective collision strengths for transitions in Fe XVI. Methods. For energy levels and radiative rates we have used the General purpose Relativistic Atomic Structure Package ( grasp), and for the compuations of collision strengths the Dirac Atomic R-matrix Code (darc) has been adopted. Results. Energies for the lowest 39 levels among the n
Resumo:
Experimental data are presented for the scattering of electrons by H2O between 17 and 250 meV impact energy. These results are used in conjunction with a generally applicable method, based on a quantum defect theory approach to electron-polar molecule collisions, to derive the first set of data for state-to-state rotationally inelastic scattering cross sections based on experimental values.
Resumo:
In a recent Letter to the Editor (J Rao, D Delande and K T Taylor 2001 J. Phys. B: At. Mol. Opt. Phys. 34 L391-9) we made a brief first report of our quantal and classical calculations for the hydrogen atom in crossed electric and magnetic fields at constant scaled energy and constant scaled electric field strength. A principal point of that communication was our statement that each and every peak in the Fourier transform of the scaled quantum photo-excitation spectrum for scaled energy value epsilon = -0.586 538 871028 43 and scaled electric value (f) over tilde = 0.068 537 846 207 618 71 could be identified with a scaled action value of a found and mapped-out closed orbit up to a scaled action of 20. In this follow-up paper, besides presenting full details of our quantum and classical methods, we set out the scaled action values of all 317 closed orbits involved, together with the geometries of many.
Resumo:
Correlated electron-ion dynamics (CEID) is an extension of molecular dynamics that allows us to introduce in a correct manner the exchange of energy between electrons and ions. The formalism is based on a systematic approximation: small amplitude moment expansion. This formalism is extended here to include the explicit quantum spread of the ions and a generalization of the Hartree-Fock approximation for incoherent sums of Slater determinants. We demonstrate that the resultant dynamical equations reproduce analytically the selection rules for inelastic electron-phonon scattering from perturbation theory, which control the mutually driven excitations of the two interacting subsystems. We then use CEID to make direct numerical simulations of inelastic current-voltage spectroscopy in atomic wires, and to exhibit the crossover from ionic cooling to heating as a function of the relative degree of excitation of the electronic and ionic subsystems.
Resumo:
The reliable measurement of the electron energy distribution function (EEDF) of plasmas is one of the most important subjects of plasma diagnostics, because this piece of information is the key to understand basic discharge mechanisms. Specific problems arise in the case of RF-excited plasmas, since the properties of electrons are subject to changes on a nanosecond time scale and show pronounced spatial anisotropy. We report on a novel spectroscopic method for phase- and space-resolved measurements of the electron energy distribution function of energetic (> 12 eV) electrons in RF discharges. These electrons dominate excitation and ionization processes and are therefore of particular interest. The technique is based on time-dependent measurements during the RF cycle of excited-state populations of rare gases admixed in small fractions. These measurements yield � in combination with an analytical model � detailed information on the excitation processes. Phase-resolved optical emission spectroscopy allows us to overcome the difficulties connected with the very low densities (107�109 cm�3) and the transient character of the electrons in the sheath region. The EEDF of electrons accelerated in the sheath region can be described by a shifted Maxwellian with a drift velocity component in direction of the electric field. The method yields the high-energy tail of the EEDF on an absolute scale. The applicability of the method is demonstrated at a capacitively coupled RF discharge in hydrogen.