137 resultados para evidence-based approach
Resumo:
Extending the work presented in Prasad et al. (IEEE Proceedings on Control Theory and Applications, 147, 523-37, 2000), this paper reports a hierarchical nonlinear physical model-based control strategy to account for the problems arising due to complex dynamics of drum level and governor valve, and demonstrates its effectiveness in plant-wide disturbance handling. The strategy incorporates a two-level control structure consisting of lower-level conventional PI regulators and a higher-level nonlinear physical model predictive controller (NPMPC) for mainly set-point manoeuvring. The lower-level PI loops help stabilise the unstable drum-boiler dynamics and allow faster governor valve action for power and grid-frequency regulation. The higher-level NPMPC provides an optimal load demand (or set-point) transition by effective handling of plant-wide interactions and system disturbances. The strategy has been tested in a simulation of a 200-MW oil-fired power plant at Ballylumford in Northern Ireland. A novel approach is devized to test the disturbance rejection capability in severe operating conditions. Low frequency disturbances were created by making random changes in radiation heat flow on the boiler-side, while condenser vacuum was fluctuating in a random fashion on the turbine side. In order to simulate high-frequency disturbances, pulse-type load disturbances were made to strike at instants which are not an integral multiple of the NPMPC sampling period. Impressive results have been obtained during both types of system disturbances and extremely high rates of load changes, right across the operating range, These results compared favourably with those from a conventional state-space generalized predictive control (GPC) method designed under similar conditions.
Resumo:
The implementation of effective time analysis methods fast and accurately in the era of digital manufacturing has become a significant challenge for aerospace manufacturers hoping to build and maintain a competitive advantage. This paper proposes a structure oriented, knowledge-based approach for intelligent time analysis of aircraft assembly processes within a digital manufacturing framework. A knowledge system is developed so that the design knowledge can be intelligently retrieved for implementing assembly time analysis automatically. A time estimation method based on MOST, is reviewed and employed. Knowledge capture, transfer and storage within the digital manufacturing environment are extensively discussed. Configured plantypes, GUIs and functional modules are designed and developed for the automated time analysis. An exemplar study using an aircraft panel assembly from a regional jet is also presented. Although the method currently focuses on aircraft assembly, it can also be well utilized in other industry sectors, such as transportation, automobile and shipbuilding. The main contribution of the work is to present a methodology that facilitates the integration of time analysis with design and manufacturing using a digital manufacturing platform solution.