50 resultados para eusocial insects
Resumo:
1. Diet and health are intimately linked and recent studies have found that caloric restriction can affect immune function. However, when given a choice between diets that differ in their macronutrient composition, pathogen-infected individuals can select a diet that improves their survival, suggesting that the nutritional composition of the diet, as well as its calorie content, can play a role in defence against disease. Moreover, as individuals change their diet when infected, it suggests that a diet that is optimal for growth is not optimal for immunity, leading to trade-offs.
2. Currently, our knowledge of the effects of diet on immunity is limited because previous experiments have manipulated either single nutrients or the calorie content of the diet without considering their interactive effects. By simultaneously manipulating both the diet composition (quality) and its caloric density (quantity), in both naive and immune-challenged insects, we asked how do diet quality and quantity influence an individual's ability to mount an immune response? And to what extent are allocation trade-offs driven by quantity- versus quality-based constraints?
3. We restricted individuals to 20 diets varying in their protein and carbohydrate content and used 3D response surfaces to visualize dietary effects on larval growth and immune traits. Our results show that both constitutive and induced immune responses are not limited by the total quantity of nutrients consumed, but rather different traits respond differently to variation in the ratios of macronutrients (diet quality), and peak in different regions of macronutrient space. The preferred dietary composition therefore represents a compromise between the nutritional requirements of growth and immune responses. We also show that a non-pathogenic immune challenge does not affect diet choice, rather immune-challenged insects modify their allocation of nutrients to improve their immune response.
4. Our results indicate that immune traits are affected by the macronutrient content of the diet and that no diet can simultaneously optimize all components of the immune system. To date the emphasis has been on the effects of micronutrients in improving immunity, our findings indicate that this must be widened to include the neglected impact of macronutrients on defence against disease.
Resumo:
Globally there is concern over the decline of bees, an ecologically important group of pollinating insects. Genetic studies provide insights into population structure that are crucial for conservation management but that would be impossible to obtain by conventional ecological methods. Yet conservation genetic studies of bees have primarily focussed on social species rather than the more species-rich solitary bees. Here we investigate the population structure of Colletes floralis, a rare and threatened solitary mining bee, in Ireland and Scotland using nine microsatellite loci. Genetic diversity was surprisingly as high in Scottish (Hebridean island) populations at the extreme northwestern edge of the species range as in mainland Irish populations further south. Extremely high genetic differentiation among populations was detected; multilocus FST was up to 0.53, and G’ST and Dest were even higher (maximum: 0.85 and 1.00 respectively). A pattern of isolation by distance was evident for sites separated by land. Water appears to act as a substantial barrier to gene flow yet sites separated by sea did not exhibit isolation by distance. Colletes floralis populations are extremely isolated and probably not in regional migration-drift equilibrium. GIS-based landscape genetic analysis reveals urban areas as a potential and substantial barrier to gene flow. Our results highlight the need for urgent site-specific management action to halt the decline of this and potentially other rare solitary bees.
Resumo:
Eusociality is widely considered a major evolutionary transition. The socially polymorphic sweat bee Halictus rubicundus, solitary in cooler regions of its holarctic range and eusocial in warmer parts, is an excellent model organism to address this transition, and specifically the question of whether sociality is associated with a strong barrier to gene flow between phenotypically divergent populations. Mitochondrial DNA (COI) from specimens collected across the British Isles, where both solitary and social phenotypes are represented, displayed limited variation, but placed all specimens in the same European lineage; haplotype network analysis failed to differentiate solitary and social lineages. Microsatellite genetic variability was high and enabled us to quantify genetic differentiation among populations and social phenotypes across Great Britain and Ireland. Results from conceptually different analyses consistently showed greater genetic differentiation between geographically distant populations, independently of their social phenotype, suggesting that the two social forms are not reproductively isolated. A landscape genetic approach revealed significant isolation by distance (Mantel test r = 0.622, p
Resumo:
Neotropical orchid bees (Euglossini) are conspicuously different from other corbiculate bees (Apinae) in their lack of advanced sociality and in male use of acquired odors (fragrances) as pheromone-analogues. In both contexts, orchid bee mating systems, in particular the number of males a female mates with, are of great interest but are currently unknown. To assess female mating frequency in the genus Euglossa, we obtained nests from three species in Mexico and Panama and genotyped mothers and their brood at microsatellite DNA loci. In 26 out of 29 nests, genotypes of female brood were fully consistent with being descended from a singly mated mother. In nests with more than one adult female present, those adult females were frequently related, with genotypes being consistent with full sister-sister (r = 0.75) or mother-daughter (r = 0.5) relationships. Thus, our genetic data support the notions of female philopatry and nest-reuse in the genus Euglossa. Theoretically, single mating should promote the evolution of eusociality by maximizing the relatedness among individuals in a nest. However, in Euglossini this genetic incentive has not led to the formation of eusocial colonies as in other corbiculate bees, presumably due to differing ecological or physiological selective regimes. Finally, monandry in orchid bees is in agreement with the theory that females select a single best mate based on the male fragrance phenotype, which may contain information on male age, cognitive ability, and competitive strength.
Resumo:
The nervous systems of helminths are predominantly peptidergic in nature, although it is likely that the full range of regulatory peptides used by these organisms has yet to be elucidated. Attempts to identify novel helminth neuropeptides are being made using immunocytochemistry with antisera raised against peptides isolated originally from insects. One of these antisera was raised against allatostatin III, a peptide isolated originally from the cockroach, Diploptera punctata, and a member of a family of related peptides found in insects. Allatostatin immunoreactivity was found throughout the nervous systems of Mesocestoides corti tetrathyridia, and adult Moniezia expansa, Diclidophora merlangi, Fasciola hepatica, Schistosoma mansoni, Ascaris suum and Panagrellus redivivus. Immunostaining was observed in the nerve cords and anterior ganglia of all the helminths. It was also apparent in the subtegumental nerves and around the reproductive apparatus of the flatworms, in neurones in the pharynx of D. merlangi, F. hepatica, A. suum and P. redivivus, and in fibres innervating the anterior sense organs in the nematodes. Immunostaining in all species was both reproducible and specific in that it could be abolished by pre-absorption of the antiserum with allatostatins I-IV. These results suggest that molecules related to the D. punctata allatostatins are important components in the nervous systems of a number of helminth parasites, and a free-living nematode. Their distribution within the nervous system suggests they function as neurotransmitters/ neuromodulators with roles in locomotion, feeding, reproduction and sensory perception.
Resumo:
The allatostatins are a family of peptides isolated originally from the cockroach, Diploptera punctata. Related peptides have been identified in Periplaneta americana and the blowfly, Calliphora vomitoria. These peptides have been shown to be potent inhibitors of juvenile hormone synthesis in these species. A peptide inhibitor of juvenile hormone biosynthesis has also been isolated from the moth, Manduca sexta; however, this peptide has no structural homology with the D. punctata-type allatostatins. Investigations of the phylogeny of the D. punctata allatostatin peptide family have been started by examining a number of nonarthropod invertebrates for the presence of allatostatin-like molecules using immunocytochemistry with antisera directed against the conserved C-terminal region of this family. Allatostatin-like immunoreactivity (ALIR) was demonstrated in the nervous systems of Hydra oligactis (Hydrozoa), Moniezia expansa (Cestoda), Schistosoma mansoni (Trematoda), Artioposthia triangulata (Turbellaria), Ascaris suum (Nematoda), Lumbricus terrestris (Oligochaeta), Limax pseudoflavus (Gastropoda), and Eledone cirrhosa (Cephalopoda). ALIR could not be demonstrated in Ciona intestinalis (Ascidiacea). These results suggest that molecules related to the allatostatins may play an important role in nervous system function in many invertebrates as well as in insects and that they also have an ancient evolutionary lineage. (C) 1994 Wiley-Liss, Inc.
Resumo:
FMRFamide was isolated originally from neural-tissue extracts of a bivalve mollusc, since when either authentic FMRFamide or a series of structurally-related peptides have been isolated from representative arthropods, annelids and many additional molluscs. However, to date no information exists as to the definitive presence and primary structure of a FaRP in a free-living flatworm. Here, we report the isolation and primary structure of a FaRP from the free-living turbellarian, Artioposthia triangulata, a species from which NPF has been previously structurally-characterised. Unlike molluscs and insects, in which several FaRP a are expressed, only a single member of this family was detected in this turbellarian. The primary structure of this turbellarian FaRP was established as Arg-Tyr-Ile-Arg-Phe-NH2 (RYIRFamide) and the molecular mass as 752.7 Da. These data have established unequivocally that FaRPs occur in the nervous systems of the most phylogenetically-ancient invertebrates which display bilaterally-symmetrical neuronal plans and that authentic FMRFamide is probably not the original member of the family in molecular evolutionary terms.
Resumo:
Using the foraging movements of an insectivorous bat, Myotis mystacinus, we describe temporal switching of foraging behaviour in response to resource availability. These observations conform to predictions of optimized search under the Lévy flight paradigm. However, we suggest that this occurs as a result of a preference behaviour and knowledge of resource distribution. Preferential behaviour and knowledge of a familiar area generate distinct movement patterns as resource availability changes on short temporal scales. The behavioural response of predators to changes in prey fields can elicit different functional responses, which are considered to be central in the development of stable predator-prey communities. Recognizing how the foraging movements of an animal relate to environmental conditions also elucidates the evolution of optimized search and the prevalence of discrete strategies in natural systems. Applying techniques that use changes in the frequency distribution of movements facilitates exploration of the processes that underpin behavioural changes. © 2012 The Author(s) Published by the Royal Society. All rights reserved.
Resumo:
Last interglacial sediments in unglaciated Alaska and Yukon (eastern Beringia) are commonly identified by palaeoecological indicators and stratigraphic position ~2-5m above the regionally prominent Old Crow tephra (124±10ka). We demonstrate that this approach can yield erroneous age assignments using data from a new exposure at the Palisades, a site in interior Alaska with numerous exposures of last interglacial sediments. Tephrochronology, stratigraphy, plant macrofossils, pollen and fossil insects from a prominent wood-rich organic silt unit are all consistent with a last interglacial age assignment. However, six 14C dates on plant and insect macrofossils from the organic silt range from non-finite to 4.0 14C ka BP, indicating that the organic silt instead represents a Holocene deposit with a mixed-age assemblage of organic material. In contrast, wood samples from presumed last interglacial organic-rich sediments elsewhere at the Palisades, in a similar stratigraphic position with respect to Old Crow tephra, yield non-finite 14C ages. Given that local permafrost thaw since the last interglaciation may facilitate reworking of older sediments into new stratigraphic positions, minimum constraining ages based on 14C dating or other methods should supplement age assignments for last interglacial sediments in eastern Beringia that are based on palaeoecology and stratigraphic association with Old Crow tephra.
Resumo:
Nutrition is critical to immune defence and parasite resistance, which not only affects individual organisms, but also has profound ecological and evolutionary consequences. Nutrition and immunity are complex traits that interact via multiple direct and indirect pathways, including the direct effects of nutrition on host immunity but also indirect effects mediated by the host's microbiota and pathogen populations. The challenge remains, however, to capture the complexity of the network of interactions that defines nutritional immunology. The aim of this paper is to discuss the recent findings in nutritional research in the context of immunological studies. By taking examples from the entomological literature, we argue that insects provide a powerful tool for examining the network of interactions between nutrition and immunity due to their tractability, short lifespan and ethical considerations. We describe the relationships between dietary composition, immunity, disease and microbiota in insects, and highlight the importance of adopting an integrative and multi-dimensional approach to nutritional immunology.
Resumo:
Xie and colleagues previously isolated the Arabidopsis COI1 gene that is required for response to jasmonates (JAs), which regulate root growth, pollen fertility, wound healing, and defense against insects and pathogens. In this study, we demonstrate that COI1 associates physically with AtCUL1, AtRbx1, and either of the Arabidopsis Skp1-like proteins ASK1 or ASK2 to assemble ubiquitin-ligase complexes, which we have designated SCF(COI1). COI1(E22A), a single amino acid substitution in the F-box motif of COI1, abolishes the formation of the SCF(COI1) complexes and results in loss of the JA response. AtRbx1 double-stranded RNA-mediated genetic interference reduces AtRbx1 expression and affects JA-inducible gene expression. Furthermore, we show that the AtCUL1 component of SCF(COI1) complexes is modified in planta, where mutations in AXR1 decrease the abundance of the modified AtCUL1 of SCF(COI1) and lead to a reduction in JA response. Finally, we demonstrate that the axr1 and coi1 mutations display a synergistic genetic interaction in the double mutant. These results suggest that the COI1-mediated JA response is dependent on the SCF(COI1) complexes in Arabidopsis and that the AXR1-dependent modification of the AtCUL1 subunit of SCF(COI1) complexes is important for JA signaling.
Resumo:
Bulk paleosol samples collected from a Middle to Early Miocene moraine in the New Mountain area of the Dry Valleys, Antarctica, yielded Coleoptera exoskeletons and occasional endoskeletons showing considerable diagenetic effects along with several species of bacteria, all lodged in a dry-frozen but salt-rich horizon at shallow depth to the land surface. The till is at the older end of a chronologic sequence of glacial deposits, thought to have been deposited before the transition from wet-based to cold-based ice (similar to 15 Ma), and hence, entirely weathered in contact with the subaerial atmosphere. It is possible, though not absolutely verifiable, that the skeletons date from this early stage of emplacement having undergone modifications whenever light snowmelt occurred or salt concentrations lowered the freezing temperature to maintain water as liquid. Correlation of the Coleoptera species with cultured bacteria in the sample and the likelihood of co-habitation with Beauveria bassiani found in two adjacent, although younger paleosols, leads to new questions about the antiquity of the Coleoptera and the source of N and glucose from chitinase derived from the insects. The skeletons in the 831 section may date close to the oldest preserved chitin (Oligocene) yet found on Earth. While harsh Martian conditions make it seemingly intolerable for complex, multicellular organisms such as insects to exist in the near-surface and subaerially, life within similar cold, dry paleosol microenvironments (Cryosols) of Antarctica point to life potential for the Red Planet, especially when considering the relatively diverse microbe (bacteria and fungi) population. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The Eurasian otter (Lutra lutra L.) is a top predator in aquatic systems and plays an important role in ecosystem functioning. However, it has undergone dramatic declines throughout Europe as a result of environmental degradation. We examine the putative role of the otter as a bioindicator in Ireland which remains a stronghold for the species and affords a unique opportunity to examine variation in its ecological niche. We describe diet, using spraint contents, along rivers during 2010 and conduct a review and quantitative meta-analysis of the results of a further 21 studies. We aimed to assess variation in otter diet in relation to river productivity, a proxy for natural nutrification and anthropogenic eutrophication, and availability of salmonid prey (Salmo trutta and Salmo salar), to test the hypothesis that otter diet is related to environmental quality. Otter diet did not vary with levels of productivity or availability of salmonids whilst Compositional Analysis suggested there was no selection of salmonid over non-salmonid fish. There was a distinct niche separation between riverine and lacustrine systems, the latter being dominated by Atlantic eel (Anguilla anguilla). Otters are opportunistic and may take insects, freshwater mussels, birds, mammals and even fruit. Otters living along coasts have a greatest niche breath than those in freshwater systems which encompasses a wide variety of intertidal prey though pelagic fish are rarely taken. It is concluded that the ability of the otter to feed on a wide diversity of prey taxa and the strong influence of habitat type, renders it a poor bioindicator of environmental water quality. It seems likely that the plasticity of the habitat and dietary niche of otters, and the extent of suitable habitat, may have sustained populations in Ireland despite intensification of agriculture during the 20th century.
Resumo:
Major ampullate silk fibers of orb web-weaving spiders have impressive mechanical properties due to the fact that the underlying proteins partially fold into helical/amorphous structures, yielding relatively elastic matrices that are toughened by anisotropic nanoparticulate inclusions (formed from stacks of beta-sheets of the same proteins). In vivo the transition from soluble protein to solid fibers involves a combination of chemical and mechanical stimuli (such as ion exchange, extraction of water and shear forces). Here we elucidate the effects of such stimuli on the in vitro aggregation of engineered and recombinantly produced major ampullate silk-like proteins (focusing on structure-function relationships with respect to their primary structures), and discuss their relevance to the storage and assembly of spider silk proteins in vivo. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
A study of a large number of published experiments on the behaviour of insects navigating by skylight has led to the design of a system for navigation in lightly clouded skies, suitable for a robot or drone. The design is based on the measurement of the directions in the sky at which the polarization angle, i.e. the angle χ between the polarized E-vector and the meridian, equals ±π/4 or ±(π/4 + π/3) or ±(π/4 - π/3). For any one of these three options, at any given elevation, there are usually 4 such directions and these directions can give the azimuth of the sun accurately in a few short steps, as an insect can do. A simulation shows that this compass is accurate as well as simple and well suited for an insect or robot. A major advantage of this design is that it is close to being invariant to variable cloud cover. Also if at least two of these 12 directions are observed the solar azimuth can still be found by a robot, and possibly by an insect.