245 resultados para europium ions
Resumo:
Experimental and theoretical studies of one-electron capture in collisions of He2+ ions with H2O molecules have been carried out in the range 0.025-12 keV amu(-1) corresponding to typical solar wind velocities of 70-1523 km s(-1). Translational energy spectroscopy (TES), photon emission spectroscopy (PES), and fragment ion spectroscopy were employed to identify and quantify the collision mechanisms involved. Cross sections for selective single electron capture into n=1, 2, and 3 states of the He+ ion were obtained using TES while PES provided cross sections for capture into the He+(2p) and He+(3p) states. Our model calculations show that He+(n=2) and He+(n=3) formation proceeds via a single-electron process governed by the nucleus-electron interaction. In contrast, the He+(1s) formation mechanism involves an exothermic two-electron process driven by the electron-electron interaction, where the potential energy released by the electron capture is used to remove a second electron thereby resulting in fragmentation of the H2O molecule. This process is found to become increasingly important as the collision energy decreases. The experimental cross sections are found to be in reasonable agreement with cross sections calculated using the Demkov and Landau-Zener models.
Resumo:
Translational energy spectroscopy (TES) has been used to study state-selective one-electron capture by H and He-like ions of C, N and O in both H and H-2 within the range 250-900 eV amu(- 1). The main collision mechanisms leading to state-selective electron capture have been identified, their relative importance assessed and compared, where possible, with theoretical predictions and with any previous measurements based on photon emission spectroscopy. For one-electron capture in H-2, the relative importance of contributions from non- dissociative and dissociative capture as well as from two- electron capture into autoionizing states is found to be strikingly different for the cases considered. Our TES measurements in atomic hydrogen provide an important extension of previous measurements to energies below 1000 eV amu(-1) and show that, as the impact energy decreases, electron capture becomes more selective until only a single n product channel is significant. These product main channels are well described by reaction windows calculated using a Landau-Zener approach. However, the same approach applied to the more complex energy- change spectra observed in H-2 is found to be less successful.
Resumo:
The technique of double translational energy spectroscopy.(DTES), recently successfully developed in this laboratory for use with targets of atomic hydrogen, has been used to study one-electron capture by ground-state N2+(2s22p)(2)p(0) ions in collisions with hydrogen atoms at energies within the range 0.8-6.0 keV. Cross sections for the formation of the main excited product channels have been determined. The measurements allow a re-evaluation of our previous TES measurements carried out with N2+ primary beams containing an admixture of metastable N2+(2s2p2)(4)p ions. The main findings of these earlier measurements are confirmed and the DTES measurements now remove any ambiguity in interpretation of the experimental data. While recent theoretical studies correctly predict the two main N+ D-3(0) and P-3(0) product channels, the quantitative agreement with experiment is only partially satisfactory.
Resumo:
The interaction of an intense laser field with a beam of atomic ions has been investigated experimentally for the first time. The ionization dynamics of Ar+ ions and Ar neutrals in a 60 fs, 790 nm laser pulse have been compared and contrasted at intensities up to 10(16) W cm (-2). Our results show that nonsequential ionization from an Ar+ target is strongly suppressed compared with that from the corresponding neutral target. We have also observed for the first time the strong field ionization of high lying target metastable levels in the Ar+ beam.
Resumo:
Measurements of electron capture and ionization of O-2 molecules in collisions with H+ and O+ ions have been made over an energy range 10 - 100 keV. Cross sections for dissociative and nondissociative interactions have been separately determined using coincidence techniques. Nondissociative channels leading to O-2(+) product formation are shown to be dominant for both the H+ and the O+ projectiles in the capture collisions and only for the H+ projectiles in the ionization collisions. Dissociative channels are dominant for ionizing collisions involving O+ projectiles. The energy distributions of the O+ fragment products from collisions involving H+ and O+ have also been measured for the first time using time-of-flight methods, and the results are compared with those from other related studies. These measurements have been used to describe the interaction of the energetic ions trapped in Jupiter's magnetosphere with the very thin oxygen atmosphere of the icy satellite Europa. It is shown that the ionization of oxygen molecules is dominated by charge exchange plus ion impact ionization processes rather than photoionization. In addition, dissociation is predominately induced through excitation of electrons into high-lying repulsive energy states ( electronically) rather than arising from momentum transfer from knock-on collisions between colliding nuclei, which are the only processes included in current models. Future modeling will need to include both these processes.
Resumo:
We have analysed the electronic wave functions from an ab initio simulation of the ionic liquid (room temperature molten salt) dimethyl imidazolium chloride ([dmim][Cl] or [C1mim][Cl]) using localized Wannier orbitals. This allows us to assign electron density to individual ions. The probability distributions of the ionic dipole moments for an isolated ion and for ions in solution are compared. The liquid environment is found to polarize the cation by about 0.7 D and to increase the amplitude of the fluctuations in the dipole moments of both cation and anion. The relative changes in nuclear and electronic contributions are shown. The implications for classical force fields are discussed.
Resumo:
In this review we consider those processes in condensed matter that involve the irreversible flow of energy between electrons and nuclei that follows from a system being taken out of equilibrium. We survey some of the more important experimental phenomena associated with these processes, followed by a number of theoretical techniques for studying them. The techniques considered are those that can be applied to systems containing many nonequivalent atoms. They include both perturbative approaches (Fermi's Golden Rule and non-equilibrium Green's functions) and molecular dynamics based (the Ehrenfest approximation, surface hopping, semi-classical Gaussian wavefunction methods and correlated electron-ion dynamics). These methods are described and characterized, with indications of their relative merits.
Resumo:
Charge exchange followed by radiative stabilization are the main processes responsible for the recent observations of X-ray emission from comets in their approach to the Sun. A new apparatus was constructed at JPL to measure, in collisions of HCIs with atoms and molecules, (a) absolute cross sections for single and multiple charge exchange, and (b) normalized X-ray emission cross sections. The ions are produced by the JPL HCI Facility and passed through a neutral-gas target cell. The product charge states are analyzed by a retarding potential difference technique. Results are made absolute by measuring target pressure, and incident and product ion currents. X-rays emitted from the product ions are detected with a Ge solid-state detector having a resolution of approximately 100 eV. X-ray astronomy has taken major steps forward with the recent launch of the high-resolution satellites Chandra and Newton. The cross sections reported herein are essential for the development of the solar wind comet interaction models inspired by these observations.
Resumo:
KLL dielectronic recombination resonances, where a free electron is captured into the L shell and at the same time a K shell electron is excited into the L shell, have been measured for open shell iodine ions by measuring the detected yield of escaping ions of various charge states and modeling the charge balance in an electron beam ion trap. In the modeling, the escape from the trap and multiple charge exchange were considered. Extracted ions were used to measure the charge balance in the trap. The different charge states were clearly separated, which along with the correction for artifacts connected with ion escape and multiple charge exchange made the open shell highly charged ion measurements of this type possible for the first time. From the measured spectra resonant strengths were obtained. The results were 4.27(39)x10(-19) cm(2) eV, 2.91(26)x10(-19) cm(2) eV, 2.39(22)x10(-19) cm(2) eV, 1.49(14)x10(-19) cm(2) eV and 7.64(76)x10(-20) cm(2) eV for the iodine ions from He-like to C-like, respectively.
Resumo:
Few-cycle laser pulses are used to "pump and probe" image the vibrational wavepacket dynamics of a HD+ molecular ion. The quantum dephasing and revival structure of the wavepacket are mapped experimentally with time-resolved photodissociation imaging. The motion of the molecule is simulated using a quantum-mechanical model predicting the observed structure. The coherence of the wavepacket is controlled by varying the duration of the intense laser pulses. By means of a Fourier transform analysis both the periodicity and relative population of the vibrational states of the excited molecular ion have been characterized.
Resumo:
The damage induced in supercoiled plasmid DNA molecules by 1-6 keV carbon ions has been investigated as a function of ion exposure, energy and charge state. The production of short linear fragments through multiple double strand breaks has been demonstrated and exponential exposure responses for each of the topoisomers have been found. The cross section for the loss of supercoiling was calculated to be (2.2 +/- 0.5) x 10(-14) cm(2) for 2 keVC(+) ions. For singly charged carbon ions, increased damage was observed with increasing ion energy. In the case of 2 keV doubly charged ions, the damage was greater than for singly charged ions of the same energy. These observations demonstrate that ion induced damage is a function of both the kinetic and potential energies of the ion.
Resumo:
Electron-ion recombination in a laser-induced electron recollision is of fundamental importance as the underlying mechanism responsible for the generation of high harmonic radiation, and hence for the production of attosecond pulse trains in the extreme ultraviolet and soft X-ray spectral regions. By using an ion beam target, remotely prepared to be partially in long-lived excited states, the recombination process has for the first time been directly observed and studied.