330 resultados para ethoexperimental neuroscience
Resumo:
Studies suggest that activation of phosphoinositide 3-kinase-Akt may protect against neuronal cell death in Alzheimer's disease (AD). Here, however, we provide evidence of increased Akt activation, and hyperphosphorylation of critical Akt substrates in AD brain, which link to AD pathogenesis, suggesting that treatments aiming to activate the pathway in AD need to be considered carefully. A different distribution of Akt and phospho-Akt was detected in AD temporal cortex neurons compared with control neurons, with increased levels of active phosphorylated-Akt in particulate fractions, and significant decreases in Akt levels in AD cytosolic fractions, causing increased activation of Akt (phosphorylated-Akt/total Akt ratio) in AD. In concordance, significant increases in the levels of phosphorylation of total Akt substrates, including: GSK3ßSer9, tauSer214, mTORSer2448, and decreased levels of the Akt target, p27kip1, were found in AD temporal cortex compared with controls. A significant loss and altered distribution of the major negative regulator of Akt, PTEN (phosphatase and tensin homologue deleted on chromosome 10), was also detected in AD neurons. Loss of phosphorylated-Akt and PTEN-containing neurons were found in hippocampal CA1 at end stages of AD. Taken together, these results support a potential role for aberrant control of Akt and PTEN signalling in AD.
Resumo:
An abundance of genetic, histopathological, and biochemical evidence has implicated the neuronal protein, alpha-synuclein (alpha-syn) as a key player in the development of several neurodegenerative diseases, the so-called synucleinopathies, of which Parkinson's disease (PD) is the most prevalent. Development of disease appears to be linked to events that increase the intracellular concentration of alpha-syn or cause its chemical modification, either of which can accelerate the rate at which it forms aggregates. Examples of such events include increased copy number of genes, decreased rate of degradation via the proteasome or other proteases, or altered forms of alpha-syn, such as truncations, missense mutations, or chemical modifications by oxidative reactions. Aggregated forms of the protein, especially newly formed soluble aggregates, are toxic to cells, so that one therapeutic strategy would be to reduce the rate at which such oligomerization occurs. We have therefore designed several peptides and also identified small molecules that can inhibit alpha-syn oligomerization and toxicity in vitro. These compounds could serve as lead compounds for the design of new drugs for the treatment of PD and related disorders in the future.
Resumo:
Estimating a time interval and temporally coordinating movements in space are fundamental skills, but the relationships between these different forms of timing, and the neural processes that they incur, are not well understood. While different theories have been proposed to account for time perception, time estimation, and the temporal patterns of coordination, there are no general mechanisms which unify these various timing skills. This study considers whether a model of perceptuo-motor timing, the tau(GUIDE), can also describe how certain judgements of elapsed time are made. To evaluate this, an equation for determining interval estimates was derived from the tau(GUIDE) model and tested in a task where participants had to throw a ball and estimate when it would hit the floor. The results showed that in accordance with the model, very accurate judgements could be made without vision (mean timing error -19.24 msec), and the model was a good predictor of skilled participants' estimate timing. It was concluded that since the tau(GUIDE) principle provides temporal information in a generic form, it could be a unitary process that links different forms of timing.
Resumo:
A multitude of tasks that we perform on a daily basis require precise information about the orientation of our limbs with respect to the environment and the objects located within it. Recent studies have suggested that the inertia tensor, a physical property whose values are time- and co-ordinate-indepenclent, may be an important informational invariant used by the proprioceptive system to control the movements of our limbs (Pagano et al., Ecol. Psychol. 8 (1996) 43; Pagano and Turvey, Percept. Psychophys. 52 (1992) 617; Pagano and Turvey, J. Exp. Psychol. Hum. Percept. Perform. 21 (1995) 1070). We tested this hypothesis by recording the angular errors made by subjects when pointing to virtual targets in the dark. Close examination of the pointing errors made did not show any significant effects of the inertia tensor modifications on pointing accuracy. The kinematics of the pointing movements did not indicate that any on-line adjustments were being made to compensate for the inertia tensor changes. The implications of these findings with respect to the functioning of the proprioceptive system are discussed.
Resumo:
Animals control contact with surfaces when locomoting, catching prey, etc. This requires sensorily guiding the rate of closure of gaps between effecters such as the hands, feet or jaws and destinations such as a ball, the ground and a prey. Control is generally rapid, reliable and robust, even with small nervous systems: the sensorimotor processes are therefore probably rather simple. We tested a hypothesis, based on general tau theory, that closing two gaps simultaneously, as required in many actions, might be achieved simply by keeping the taus of the gaps coupled in constant ratio. tau of a changing gap is defined as the time-to-closure of the gap at the current closure-rate. General tau theory shows that tau of a gap could, in principle, be directly sensed without needing to sense either the gap size or its rate of closure. In our experiment, subjects moved an effector (computer cursor) to a destination zone indicated on the computer monitor, to stop in the zone just as a moving target cursor reached it. The results indicated the subjects achieved the task by keeping tau of the gap between effector and target coupled to tau of the gap between the effector and the destination zone. Evidence of tau -coupling has also been found, for example, in bats guiding landing using echolocation. Thus, it appears that a sensorimotor process used by different species for coordinating the closure of two or more gaps between effecters and destinations entails constantly sensing the taus of the gaps and moving so as to keep the taus coupled in constant ratio.
Resumo:
Moving to a rhythm necessitates precise timing between the movement of the chosen limb and the timing imposed by the beats. However, the temporal information specifying the moment when a beat will sound (the moment onto which one must synchronise one's movement) is not continuously provided by the acoustic array. Because of this informational void, the actors need some form of prospective information that will allow them to act sufficiently ahead of time in order to get their hand in the right place at the right time. In this acoustic interception study, where participants were asked to move between two targets in such a way that they arrived and stopped in the target zone at the same time as a beat sounded, we tested a model derived from tau-coupling theory (Lee DN (1998) Ecol Psychol 10:221-250). This model attempts to explain the form of a potential timing guide that specifies the duration of the inter-beat intervals and also describes how this informational guide can be used in the timing and guidance of movements. The results of our first experiment show that, for inter-beat intervals of less than 3 s, a large proportion of the movement (over 70%) can be explained by the proposed model. However, a second experiment, which augments the time between beats so that it surpasses 3 s, shows a marked decline in the percentage of information/movement coupling. A close analysis of the movement kinematics indicates a lack of control and anticipation in the participants' movements. The implications of these findings, in light of other research studies, are discussed.
Resumo:
During lateral leg raising, a synergistic inclination of the supporting leg and trunk in the opposite direction to the leg movement is performed in order to preserve equilibrium. As first hypothesized by Pagano and Turvey (J Exp Psychol Hum Percept Perform, 1995, 21:1070-1087), the perception of limb orientation could be based on the orientation of the limb's inertia tensor. The purpose of this study was thus to explore whether the final upper body orientation (trunk inclination relative to vertical) depends on changes in the trunk inertia tensor. We imposed a loading condition, with total mass of 4 kg added to the subject's trunk in either a symmetrical or asymmetrical configuration. This changed the orientation of the trunk inertia tensor while keeping the total trunk mass constant. In order to separate any effects of the inertia tensor from the effects of gravitational torque, the experiment was carried out in normo- and microgravity. The results indicated that in normogravity the same final upper body orientation was maintained irrespective of the loading condition. In microgravity, regardless of loading conditions the same (but different from the normogravity) orientation of the upper body was achieved through different joint organizations: two joints (the hip and ankle joints of the supporting leg) in the asymmetrical loading condition, and one (hip) in the symmetrical loading condition. In order to determine whether the different orientations of the inertia tensor were perceived during the movement, the interjoint coordination was quantified by performing a principal components analysis (PCA) on the supporting and moving hips and on the supporting ankle joints. It was expected that different loading conditions would modify the principal component of the PCA. In normogravity, asymmetrical loading decreased the coupling between joints, while in microgravity a strong coupling was preserved whatever the loading condition. It was concluded that the trunk inertia tensor did not play a role during the lateral leg raising task because in spite of the absence of gravitational torque the final upper body orientation and the interjoint coupling were not influenced.
Resumo:
Blood-brain barrier (BBB) breakdown, demonstrable in vivo by enhanced MRI is characteristic of new and expanding inflammatory lesions in relapsing remitting and chronic progressive multiple sclerosis (MS). Subtle leakage may also occur in primary progressive MS. However, the anatomical route(s) of BBB leakage have not been demonstrated. We investigated the possible involvement of interendothelial tight junctions (TJ) by examining the expression of TJ proteins (occludin and ZO-1 ) in blood vessels in active MS lesions from 8 cases of MS and in normal-appearing white (NAWM) matter from 6 cases. Blood vessels (10-50 per frozen section) were scanned using confocal laser scanning microscopy to acquire datasets for analysis. TJ abnormalities manifested as beading, interruption, absence or diffuse cytoplasmic localization of fluorescence, or separation of junctions (putative opening) were frequent (affecting 40% of vessels) in oil red-O-positive active plaques but less frequent in NAWM (15%), and in normal (