43 resultados para equilibrium equation of number density


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was an attempt to replicate evidence for a vulnerability locus for schizophrenia and associated disorders in the 8p22-21 region reported by Pulver and colleagues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors sought to determine whether the clinical manifestations of schizophrenia and other psychotic disorders are correlated in affected sibling pairs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schizophrenia is clinically heterogeneous. Recent linkage studies suggest that multiple genes are important in the etiology of schizophrenia. The authors examined the hypothesis of whether the clinical variability in schizophrenia is due to genetic heterogeneity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deficit syndrome is a subtype of schizophrenia characterized by primary and enduring negative features of psychopathology. It appears to reflect a distinct subtype within the syndrome of schizophrenia. Little is known about the familial or genetic aspects of the deficit syndrome. The purpose of this study was to determine whether deficit versus nondeficit subtypes are correlated in sibling pairs affected with schizophrenia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epistasis may be important in the etiology of schizophrenia. Analysis of epistasis has been important in the positional cloning of a gene involved in the etiology of type II diabetes mellitus. We investigated the importance of epistasis among six linked regions in 268 multiplex pedigrees in the Irish Study of High-Density Schizophrenia Families (ISHDSF) by computing pairwise correlations between nonparametric linkage scores for narrow, intermediate, and broad diagnostic definitions. The linked regions were on chromosomes 2, 4, 5, 6, 8, and 10. No correlation reached our a priori level of statistical significance. Using this statistical approach, we did not find evidence of important epistatic effects among these six regions in the ISHDSF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neuregulin-1 gene (NRG1) at chromosome 8p21-22 has been implicated as a schizophrenia susceptibility gene in Icelandic, Scottish, Irish and mixed UK populations. The shared ancestry between these populations led us to investigate the NRG1 polymorphisms and appropriate marker haplotypes for linkage and/or association to schizophrenia in the Irish study of high-density schizophrenia families (ISHDSF). Neither single-point nor multi-point linkage analysis of NRG1 markers gave evidence for linkage independent of our pre-existing findings telomeric on 8p. Analysis of linkage disequilibrium (LD) across the 252 kb interval encompassing the 7 marker core Icelandic/Scottish NRG1 haplotype revealed two separate regions of modest LD, comprising markers SNP8NRG255133, SNP8NRG249130 and SNP8NRG243177 (telomeric) and microsatellites 478B14-428, 420M9-1395, D8S1810 and 420M9-116I12 (centromeric). From single marker analysis by TRANSMIT and FBAT we found no evidence for association with schizophrenia for any marker. Haplotype analysis for the three SNPs in LD region 1 and, separately, the four microsatellites in LD region 2 (analyzed in overlapping 2-marker windows), showed no evidence for overtransmission of specific haplotypes to affected individuals. We therefore conclude that if NRG1 does contain susceptibility alleles for schizophrenia, they impact quite weakly on risk in the ISHDSF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of genetic substructure has the potential to diminish the chances of detecting a linkage signal. Using a Markov chain Monte Carlo procedure developed by Pritchard and colleagues and implemented in the program STRUCTURE, we evaluated the evidence for genetic substructure using genotypes from 37 microsatellite markers in affected individuals selected at random from 263 multiplex families in the Irish Study of High-Density Schizophrenia Families. We found no evidence for the presence of genetic substructure in this sample.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isochoric heating of solid-density matter up to a few tens of eV is of interest for investigating astrophysical or inertial fusion scenarios. Such ultra-fast heating can be achieved via the energy deposition of short-pulse laser generated electrons. Here, we report on experimental measurements of this process by means of time-and space-resolved optical interferometry. Our results are found in reasonable agreement with a simple numerical model of fast electron-induced heating. (C) 2013 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a comparative newly-invented PKM with over-constraints in kinematic chains, the Exechon has attracted extensive attention from the research society. Different from the well-recognized kinematics analysis, the research on the stiffness characteristics of the Exechon still remains as a challenge due to the structural complexity. In order to achieve a thorough understanding of the stiffness characteristics of the Exechon PKM, this paper proposed an analytical kinetostatic model by using the substructure synthesis technique. The whole PKM system is decomposed into a moving platform subsystem, three limb subsystems and a fixed base subsystem, which are connected to each other sequentially through corresponding joints. Each limb body is modeled as a spatial beam with a uniform cross-section constrained by two sets of lumped springs. The equilibrium equation of each individual limb assemblage is derived through finite element formulation and combined with that of the moving platform derived with Newtonian method to construct the governing kinetostatic equations of the system after introducing the deformation compatibility conditions between the moving platform and the limbs. By extracting the 6 x 6 block matrix from the inversion of the governing compliance matrix, the stiffness of the moving platform is formulated. The computation for the stiffness of the Exechon PKM at a typical configuration as well as throughout the workspace is carried out in a quick manner with a piece-by-piece partition algorithm. The numerical simulations reveal a strong position-dependency of the PKM's stiffness in that it is symmetric relative to a work plane due to structural features. At the last stage, the effects of some design variables such as structural, dimensional and stiffness parameters on system rigidity are investigated with the purpose of providing useful information for the structural optimization and performance enhancement of the Exechon PKM. It is worthy mentioning that the proposed methodology of stiffness modeling in this paper can also be applied to other overconstrained PKMs and can evaluate the global rigidity over workplace efficiently with minor revisions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address the out-of-equilibrium thermodynamics of an isolated quantum system consisting of a cavity optomechanical device. We explore the dynamical response of the system when driven out of equilibrium by a sudden quench of the coupling parameter and compute analytically the full distribution of the work generated by the process. We consider linear and quadratic optomechanical coupling, where the cavity field is parametrically coupled to either the position or the square of the position of a mechanical oscillator, respectively. In the former case we find that the average work generated by the quench is zero, whilst the latter leads to a non-zero average value. Through fluctuations theorems we access the most relevant thermodynamical figures of merit, such as the free energy difference and the amount of irreversible work generated. We thus provide a full charac- terization of the out-of-equilibrium thermodynamics in the quantum regime for nonlinearly coupled bosonic modes. Our study is the first due step towards the construction and full quantum analysis of an optomechanical machine working fully out of equilibrium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and properties of melt mixed high-density polyethylene/multi-walled carbon nanotube (HDPE/MWCNT) composites processed by compression molding and blown film extrusion were investigated to assess the influence of processing route on properties. The addition of MWCNTs leads to a more elastic response during deformations that result in a more uniform thick-ness distribution in the blown films. Blown film composites exhibit better mechanical properties due to the enhanced orientation and disentanglement of MWCNTs. At a blow up ratio (BUR) of 3 the breaking strength and elongation in the machine direction of the film with 4 wt % MWCNTs are 239% and 1054% higher than those of compression molded (CM) samples. Resistivity of the composite films increases significantly with increasing BURs due to the destruction of conductive pathways. These pathways can be recovered partially using an appropriate annealing process. At 8 wt % MWCNTs, there is a sufficient density of nanotubes to maintain a robust network even at high BURs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by melt mixing using twin-screw extrusion. The extruded pellets were compression moulded at 200°C for 5min followed by cooling at different cooling rates (20°C/min and 300°C/min respectively) to produce sheets for characterization. Scanning electron microscopy (SEM) shows that the MWCNTs are uniformly dispersed in the HDPE. At 4 wt% addition of MWCNTs composite modulus increased by over 110% compared with the unfilled HDPE (regardless of the cooling rate). The yield strength of both unfilled and filled HDPE decreased after rapid cooling by about 10% due to a lower crystallinity and imperfect crystallites. The electrical percolation threshold of composites, irrespective of the cooling rate, is between a MWCNT concentration of 1∼2 wt%. Interestingly, the electrical resistivity of the rapidly cooled composite with 2 wt% MWCNTs is lower than that of the slowly cooled composites with the same MWCNT loading. This may be due to the lower crystallinity and smaller crystallites facilitating the formation of conductive pathways. This result may have significant implications for both process control and the tailoring of electrical conductivity in the manufacture of conductive HDPE/MWCNT nanocomposites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent measurements using an X-ray Free Electron Laser (XFEL) and an Electron Beam Ion Trap at the Linac Coherent Light Source facility highlighted large discrepancies between the observed and theoretical values for the Fe XVII 3C/3D line intensity ratio. This result raised the question of whether the theoretical oscillator strengths may be significantly in error, due to insufficiencies in the atomic structure calculations. We present time-dependent spectral modeling of this experiment and show that non-equilibrium effects can dramatically reduce the predicted 3C/3D line intensity ratio, compared with that obtained by simply taking the ratio of oscillator strengths. Once these non-equilibrium effects are accounted for, the measured line intensity ratio can be used to determine a revised value for the 3C/3D oscillator strength ratio, giving a range from 3.0 to 3.5. We also provide a framework to narrow this range further, if more precise information about the pulse parameters can be determined. We discuss the implications of the new results for the use of Fe XVII spectral features as astrophysical diagnostics and investigate the importance of time-dependent effects in interpreting XFEL-excited plasmas.