73 resultados para enzymatic biosensor
Resumo:
Glucagon-like peptide-1 (7-36)amide (tGLP-1) is inactivated by dipeptidyl peptidase (DPP) IV by removal of the NH2-terminal dipeptide His(7)-Ala(8). We examined the degradation of NH2-terminally modified His(7)-glucitol tGLP-1 and its insulin-releasing and antihyperglycaemic activity in vivo, tGLP-1 was degraded by purified DPP IV after 4 h (43% intact) and after 12 hi 89% was converted to GLP-1(9-36)amide. In contrast > 99% of His(7)-glucitol tGLP-1 remained intact at 12 h. His(7)-glucitol tGLP-1 was similarly resistant to plasma degradation in vitro. His7-glucitol tGLP-1 showed greater resistance to degradation in vivo (92% intact) compared to tGLP-1 (27% intact) 10 min after i.p. administration to Wistar rats. Glucose homeostasis was examined following i.p. injection of both peptides (12 nmol/kg) together with glucose (18 mmol/kg). Plasma glucose concentrations were significantly reduced and insulin concentrations elevated following peptides administration compared with glucose alone. The area under the curve (AUC) for glucose for controls (AUC 691 +/- 35 mM/min) was significantly lower after administration of tGLP-1 and His7-glucitol tGLP-1 (36 and 49% less; AUC; 440 +/- 40 and 353 +/- 31 mM/min, respectively; P
Resumo:
Growth-promoting agents are illicitly used during animal rearing processes and the detection of their use is limited by new compounds and dosing practices that limit the efficiency of current testing which is based on residue analysis by liquid chromatography–tandem mass spectrometry (LC–MS/MS) and gas chromatography–mass spectrometry (GC–MS) methodology. An alternative approach is to use indirect biological evidence as a screening tool to identify growth-promoter treated animals thus improving the effectiveness of residue testing through the targeted sampling of these animals. Sex hormone-binding globulin (SHBG) is a glycoprotein which binds and controls the levels of sex-hormones within the circulation. Using a biosensor assay based on measurement of binding to an immobilised 1a-dihydrotestosterone (1a-DHT) derivative, reduced SHBG binding capacities were detected in growth-promoter treated animals. During the course of a veal treatment regime based on repeated oestradiol benzoate, nortestosterone decanoate and dexamethasone administrations, treated male and female calves were shown to have significantly lower SHBG capacities. To assess the effectiveness of using SHBG binding capacities as a biomarker of treatment and to investigate the role of individual growth-promoter components to the SHBG capacity lowering effects, adult heifer animals were subjected to repeated doses of nortestosterone decanoate. These animals also demonstrated a reduction in SHBG capacity levels at Day 39 of the study, in contrast to oestradiol benzoate treated adult steers who were found to have unaltered levels. These findings suggest that the measurement of SHBG binding capacities using a biosensor assay has potential in the identification of illegally treated animals, particularly those exposed to androgens.
Resumo:
An enzyme labeled immunosorbent assay (ELISA) and surface plasmon resonance (SPR) biosensor assay for the detection of paralytic shellfish poisoning (PSP) toxins were developed and a comparative evaluation was performed. A polyclonal antibody (BC67) used in both assay formats was raised to saxitoxin–jeffamine–BSA in New Zealand white rabbits. Each assay format was designed as an inhibition assay. Shellfish samples (n = 54) were evaluated by each method using two simple rapid extraction procedures and compared to the AOAC high performance liquid chromatography (HPLC) and the mouse bioassay (MBA). The results of each assay format were comparable with the HPLC and MBA methods and demonstrate that an antibody with high sensitivity and broad specificity to PSP toxins can be applied to different immunological techniques. The method of choice will depend on the end-users needs. The reduced manual labor and simplicity of operation of the SPR biosensor compared to ELISA, ease of sample extraction and superior real time semi-quantitative analysis are key features that could make this technology applicable in a high-throughput monitoring unit.
Resumo:
Biosensors are used for a large number of applications within biotechnology, including the pharmaceutical industry and life sciences. Since the production of Biacore surface-plasmon resonance instruments in the early 1990s, there has been steadily growing use of this technology for the detection of food contaminants (e.g., veterinary drugs, mycotoxins, marine toxins, food dyes and processing contaminants). Other biosensing technologies (e.g., electrochemical and piezoelectric) have also been employed for the analysis of small-molecule contaminants. This review concentrates on recent advances made in detection and quantification of antimicrobial compounds with different types of biosensors and on the emergence of multiplexing, which is highly desirable as it increases sample analysis at lower cost and in less time. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Paralytic shellfish poisoning (PSP) toxins are produced by certain marine dinoflagellates and may accumulate in bivalve molluscs through filter feeding. The Mouse Bioassay (MBA) is the internationally recognised reference method of analysis, but it is prone to technical difficulties and regarded with increasing disapproval due to ethical reasons. As such, alternative methods are required. A rapid surface plasmon resonance (SPR) biosensor inhibition assay was developed to detect PSP toxins in shellfish by employing a saxitoxin polyclonal antibody (R895). Using an assay developed for and validated on the Biacore Q biosensor system, this project focused on transferring the assay to a high-throughput, Biacore T100 biosensor in another laboratory. This was achieved using a prototype PSP toxin kit and recommended assay parameters based on the Biacore Q method. A monoclonal antibody (GT13A) was also assessed. Even though these two instruments are based on SPR principles, they vary widely in their mode of operation including differences in the integrated mu-fluidic cartridges, autosampler system, and sensor chip compatibilities. Shellfish samples (n = 60), extracted using a simple, rapid procedure, were analysed using each platform, and results were compared to AOAC high performance liquid chromatography (HPLC) and MBA methods. The overall agreement, based on statistical 2 x 2 comparison tables, between each method ranged from 85% to 94.4% using R895 and 77.8% to 100% using GT13A. The results demonstrated that the antibody based assays with high sensitivity and broad specificity to PSP toxins can be applied to different biosensor platforms. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This review examines the developments in optical biosensor technology, which uses the phenomenon of surface plasmon resonance, for the detection of paralytic shellfish poisoning (PSP) toxins. Optical biosensor technology measures the competitive biomolecular interaction of a specific biological recognition element or binder with a target toxin immobilised onto a sensor chip surface against toxin in a sample. Different binders such as receptors and antibodies previously employed in functional and immunological assays have been assessed. Highlighted are the difficulties in detecting this range of low molecular weight toxins, with analogues differing at four chemical substitution sites, using a single binder. The complications that arise with the toxicity factors of each toxin relative to the parent compound, saxitoxin, for the measurement of total toxicity relative to the mouse bioassay are also considered. For antibodies, the cross-reactivity profile does not always correlate to toxic potency, but rather to the toxin structure to which it was produced. Restrictions and availability of the toxins makes alternative chemical strategies for the synthesis of protein conjugate derivatives for antibody production a difficult task. However, when two antibodies with different cross-reactivity profiles are employed, with a toxin chip surface generic to both antibodies, it was demonstrated that the cross-reactivity profile of each could be combined into a single-assay format. Difficulties with receptors for optical biosensor analysis of low molecular weight compounds are discussed, as are the potential of alternative non-antibody-based binders for future assay development in this area.
Resumo:
A surface plasmon resonance (SPR) optical biosensor method was developed for the detection of paralytic shellfish poisoning (PSP) toxins in shellfish. This application was transferred in the form of a prototype kit to seven laboratories using Biacore QSPR optical biosensor instrumentation for interlaboratory evaluation. Each laboratory received 20 shellfish samples across a range of species including blind duplicates for analysis. The samples consisted of 4 noncontaminated samples spiked in duplicate with a low level of PSP toxins (240 mu g STXcliHCl equivalents/kg), a high level of saxitoxin (825 mu g STXdiHCl/kg), 2 noncontarninated, and 14 naturally contaminated samples. All 7 participating laboratories completed the study, and HorRat values obtained were
Resumo:
A surface plasmon resonance (SPR) biosensor screening assay was developed and validated to detect 11 benzimidazole carbamate (BZT) veterinary drug residues in milk. The polyclonal antibody used was raised in sheep against a methyl 5(6)-[(carboxypentyl)-thio]-2-benzimidazole carbamate protein conjugate. A sample preparation procedure was developed using a modified QuEChERS method. BZT residues were extracted from milk using liquid extraction/partition with a dispersive solid phase extraction clean-up step. The assay was validated in accordance with the performance criteria described in 2002/657/EC. The limit of detection of the assay was calculated from the analysis of 20 known negative milk samples to be 2.7 mu g kg(-1). The detection capability (CC beta) of the assay was determined to be 5 mu g kg(-1) for 11 benzimidazole residues and the mean recovery of analytes was in the range 81-116%. A comparison was made between the SPR-biosensor and UPLC-MS/MS analyses of milk samples (n = 26) taken from cows treated different benzimidazole products, demonstrating the SPR-biosensor assay to be fit for purpose. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A rapid and sensitive biosensor immunoassay was developed for determination of ivermectin residues in bovine milk. A detection limit of 16.2 ng/mL was achieved. A Biacore optical biosensor based on surface plasmon resonance was used, and a range of extraction techniques was investigated. In the final assay procedure, ivermectin was extracted with acetonitrile followed by C-8 solid-phase extraction cleanup. It was proven experimentally that 2 methods of milk storage, freezing or addition of mercury-containing compounds as preservatives, could be used without considerable change in detected concentrations (samples were fortified with ivermectin after storage). The average values for milk samples spiked at 100 and 50 ng/mL concentrations were 102.6 and 51.5 ng/mL, respectively. Extraction and analysis of 20 milk samples were performed within a single working day.