106 resultados para endothelial-cell
Resumo:
Objective: Vascular lineage differentiation of stem/progenitor cells can contribute to both tissue repair and exacerbation of vascular diseases such as in vein grafts. The role of macrophages in controlling vascular progenitor differentiation is largely unknown and may play an important role in graft development. This study aims to identify the role of macrophages in vascular stem/progenitor cell differentiation and thereafter elucidate the mechanisms that are involved in the macrophage- mediated process.
Approach and Results: We provide in vitro evidence that macrophages can induce endothelial cell (EC) differentiation of the stem/progenitor cells while simultaneously inhibiting their smooth muscle cell differentiation. Mechanistically, both effects were mediated by macrophage-derived tumor necrosis factor-α (TNF-α) via TNF-α receptor 1 and canonical nuclear factor-κB activation. Although the overexpression of p65 enhanced EC (or attenuated smooth muscle cell) differentiation, p65 or TNF-α receptor 1 knockdown using lentiviral short hairpin RNA inhibited EC (or rescued smooth muscle cell) differentiation in response to TNF-α. Furthermore, TNF-α–mediated EC differentiation was driven by direct binding of nuclear factor-κB (p65) to specific VE-cadherin promoter sequences. Subsequent experiments using an ex vivo decellularized vessel scaffold confirmed an increase in the number of ECs and reduction in smooth muscle cell marker expression in the presence of TNF-α. The lack of TNF-α in a knockout mouse model of vein graft decreased endothelialization and significantly increased thrombosis formation.
Conclusions: Our study highlights the role of macrophages in directing vascular stem/progenitor cell lineage commitment through TNF-α–mediated TNF-α receptor 1 and nuclear factor-κB activation that is likely required for endothelial repair in vascular diseases such as vein graft.
Resumo:
Endothelial dysfunction is a central pathomechanism in diabetes-associated complications. We hypothesized a pathogenic role in this dysfunction of cathepsin S (Cat-S), a cysteine protease that degrades elastic fibers and activates the protease-activated receptor-2 (PAR2) on endothelial cells. We found that injection of mice with recombinant Cat-S induced albuminuria and glomerular endothelial cell injury in a PAR2-dependent manner. In vivo microscopy confirmed a role for intrinsic Cat-S/PAR2 in ischemia-induced microvascular permeability. In vitro transcriptome analysis and experiments using siRNA or specific Cat-S and PAR2 antagonists revealed that Cat-S specifically impaired the integrity and barrier function of glomerular endothelial cells selectively through PAR2. In human and mouse type 2 diabetic nephropathy, only CD68(+) intrarenal monocytes expressed Cat-S mRNA, whereas Cat-S protein was present along endothelial cells and inside proximal tubular epithelial cells also. In contrast, the cysteine protease inhibitor cystatin C was expressed only in tubules. Delayed treatment of type 2 diabetic db/db mice with Cat-S or PAR2 inhibitors attenuated albuminuria and glomerulosclerosis (indicators of diabetic nephropathy) and attenuated albumin leakage into the retina and other structural markers of diabetic retinopathy. These data identify Cat-S as a monocyte/macrophage-derived circulating PAR2 agonist and mediator of endothelial dysfunction-related microvascular diabetes complications. Thus, Cat-S or PAR2 inhibition might be a novel strategy to prevent microvascular disease in diabetes and other diseases.
Resumo:
Introduction. Endothelial colony-forming cells (ECFCs) hold great cytotherapeutic potential for ischaemic disease. Whilst increasing evidence supports a key role for reactive oxygen species (ROS), specifically those derived from Nox NADPH oxidases, in the underlying angiogenic processes of these and other endothelial cells, such studies investigating the role of redox signalling may be hampered by the standard inclusion of antioxidant agents in endothelial cell media, such as phenol red. Aims. To study the effects of antioxidants present in culture media on pro-angiogenic function of ECFCs in vitro. Methods. Human ECFCs isolated from umbilical cord blood were maintained in media with and without antioxidant components (EGM2 and phenol red-free DMEM, respectively) prior to treatment with pro-oxidant PMA and assessment of their in vitro migratory capacity using a scratch-wound assay to measure pro-angiogenic activity. Results. Our previous work in our group indicated that PMA (500nM) increased ECFC migration in a both a superoxide and NADPH oxidase-dependent manner (control 18.6±2.8, PMA 32.7±6.6% wound closure; n=6, P<0.05), as indicated by attenuation with PEG-SOD and VAS2870. However, inconsistencies in the data generated under varying experimental conditions led us to hypothesise that antioxidant agents in the standard ECFC media may be influencing these effects. Indeed, a direct comparison of cell migration between ECFCs incubated in EGM2 DMEM demonstrated a clear trend towards higher migration in the latter (EGM2 9.0±4.5, DMEM 22.7±6.4%; n=3, P=NS). Similar to our previous EGM2 studies, cell migration was potentiated by PMA (control 11.6±1.6, PMA 25.1±2.8%; n=3, P<0.05), but at a lower dose (100nM), which is consistent with a reduction in media antioxidants. Notably, this response was attenuated by VAS2870 (PMA 37.6±7.3, PMA+VAS2870 10.3±2.9%; n=6, P<0.05), underlining a likely role for Nox NADPH oxidases. Conclusion. Taken together, these data indicate that ECFC migration is sensitive to different endothelial cell growth media, which appears to be dependent upon their antioxidant content. Although further experiments, such as quantification of cellular superoxide generation by dihydroethidium fluorescence may be required to confirm a specific role for antioxidants, such blunting of ROS signalling in vitro is clearly an important consideration which may significantly impact upon data interpretation.
Resumo:
The high-affinity 67-kd laminin receptor (67LR) is expressed by proliferating endothelial cells during retinal neovascularization. The role of 67LR has been further examined experimentally by administration of selective 67LR agonists and antagonists in a murine model of proliferative retinopathy. These synthetic 67LR ligands have been previously shown to stimulate or inhibit endothelial cell motility in vitro without any direct effect on proliferation. In the present study, a fluorescently labeled 67LR antagonist (EGF33–42) was injected intraperitoneally into mice and its distribution in the retina was assessed by confocal scanning laser microscopy. Within 2 hours this peptide was localized to the retinal vasculature, including preretinal neovascular complexes, and a significant amount had crossed the blood retinal barrier. For up to 24 hours postinjection, the peptide was still present in the retinal vascular walls and, to a lesser extent, in the neural retina. Non-labeled EGF33–42 significantly inhibited pre-retinal neovascularization in comparison to controls treated with phosphate-buffered saline or scrambled peptide (P <0.0001). The agonist peptide (Lamß1925–933) also significantly inhibited proliferative retinopathy; however, it caused a concomitant reduction in retinal ischemia in this model by promoting significant revascularization of the central retina (P <0.001). Thus, 67LR appears to be an important target receptor for the modulation of retinal neovascularization. Agonism of this receptor may be valuable in reducing the hypoxia-stimulated release of angiogenic growth factors which drives retinal angiogenesis.
Resumo:
PURPOSE: A critical event in the pathogenesis of diabetic retinopathy is the inappropriate adherence of leukocytes to the retinal capillaries. Advanced glycation end-products (AGEs) are known to play a role in chronic inflammatory processes, and the authors postulated that these adducts may play a role in promoting pathogenic increases in proinflammatory pathways within the retinal microvasculature. METHODS: Retinal microvascular endothelial cells (RMECs) were treated with glycoaldehyde-modified albumin (AGE-Alb) or unmodified albumin (Alb). NFkappaB DNA binding was measured by electromobility shift assay (EMSA) and quantified with an ELISA: In addition, the effect of AGEs on leukocyte adhesion to endothelial cell monolayers was investigated. Further studies were performed in an attempt to confirm that this was AGE-induced adhesion by co-incubation of AGE-treated cells with soluble receptor for AGE (sRAGE). Parallel in vivo studies of nondiabetic mice assessed the effect of intraperitoneal delivery of AGE-Alb on ICAM-1 mRNA expression, NFkappaB DNA-binding activity, leukostasis, and blood-retinal barrier breakdown. RESULTS: Treatment with AGE-Alb significantly enhanced the DNA-binding activity of NFkappaB (P = 0.0045) in retinal endothelial cells (RMECs) and increased the adhesion of leukocytes to RMEC monolayers (P = 0.04). The latter was significantly reduced by co-incubation with sRAGE (P <0.01). Mice infused with AGE-Alb demonstrated a 1.8-fold increase in ICAM-1 mRNA when compared with control animals (P <0.001, n = 20) as early as 48 hours, and this response remained for 7 days of treatment. Quantification of retinal NFkappaB demonstrated a threefold increase with AGE-Alb infusion in comparison to control levels (AGE Alb versus Alb, 0.23 vs. 0.076, P <0.001, n = 10 mice). AGE-Alb treatment of mice also caused a significant increase in leukostasis in the retina (AGE-Alb versus Alb, 6.89 vs. 2.53, n = 12, P <0.05) and a statistically significant increase in breakdown of the blood-retinal barrier (AGE Alb versus Alb, 8.2 vs. 1.6 n = 10, P <0.001). CONCLUSIONS: AGEs caused upregulation of NFkappaB in the retinal microvascular endothelium and an AGE-specific increase in leukocyte adhesion in vitro was also observed. In addition, increased leukocyte adherence in vivo was demonstrated that was accompanied by blood-retinal barrier dysfunction. These findings add further evidence to the thinking that AGEs may play an important role in the pathogenesis of diabetic retinopathy.
Resumo:
Purpose: A number of cytotoxic chemotherapy agents tested at low concentrations show antiangiogenic properties with limited cytotoxicity, e.g., cyclophosphamide, tirapazamine, and mitoxantrone. AQ4N is a bioreductive alkylaminoanthraquinone that is cytotoxic when reduced to AQ4; hence, it can be used to target hypoxic tumor cells. AQ4N is structurally similar to mitoxantrone and was evaluated for antiangiogenic properties without the need for bioreduction.
Experimental Design:The effect of AQ4N and fumagillin on human microvascular endothelial cells (HMEC-1) was measured using a variety ofin vitro assays, i.e., 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide, wound scrape, tubule formation, rat aortic ring, and invasion assays. Low-dose AQ4N (20 mg/kg) was also given in vivo to mice bearing a tumor in a dorsal skin flap.
Results:AQ4N (10-11to10-5mol/L) hadno effect on HMEC-1viability. AQ4N (10-9to10-5mol/L) caused a sigmoidal dose-dependent inhibition of endothelial cell migration in the wound scrape model. Fumagillin showed a similar response over a lower dose range (10-13 to 10-9 mol/L); however, the maximal inhibition was less (25% versus 43% for AQ4N). AQ4N inhibited HMEC-1 cell contacts on Matrigel (10-8 to 10-5 mol/L), HMEC-1 cell invasion, and sprouting in rat aorta explants. Immunofluorescence staining with tubulin, vimentim, dynein, and phalloidin revealed that AQ4N caused disruption to the cell cytoskeleton. When AQ4N (20 mg/kg) was given in vivo for 5 days, microvessels disappeared in LNCaP tumors grown in a dorsal skin flap.
Conclusions:This combination of assays has shown that AQ4N possesses antiangiogenic effects in normoxic conditions, which could potentially contribute to antitumor activity
Resumo:
The AINT/ERIC/TACC genes encode novel proteins with a coiled coil domain at their C-terminus. The founding member of this expanding family of genes, transforming acidic coiled coil 1 (TACC1), was isolated from a BAC contig spanning the breast cancer amplicon-1 on 8p11. Transfection of cells in vitro with TACC1 resulted in anchorage-independent growth consistent with a more "neoplastic" phenotype. Database searches employing the human TACC1 sequence revealed other novel genes, TACC2 and TACC3, with substantial sequence homology particularly in the C-terminal regions encoding the coiled coil domains. TACC2, located at 10q26, is similar to anti-zuai-1 (AZU-1), a candidate breast tumour suppressor gene, and ECTACC, an endothelial cell TACC which is upregulated by erythropoietin (Epo). The murine homologue of TACC3, murine erythropoietin-induced cDNA (mERIC-1) was also found to be upregulated by Epo in the Friend virus anaemia (FVA) model by differential display-PCR. Human ERIC-1, located at 4p16.3, has been cloned and encodes an 838-amino acid protein whose N- and C-terminal regions are highly homologous to the shorter 558-amino acid murine protein, mERIC-1. In contrast, the central portions of these proteins differ markedly. The murine protein contains four 24 amino acid imperfect repeats. ARNT interacting protein (AINT), a protein expressed during embryonic development in the mouse, binds through its coiled coil region to the aryl hydrocarbon nuclear translocator protein (ARNT) and has a central portion that contains seven of the 24 amino acid repeats found in mERIC-1. Thus mERIC-1 and AINT appear to be developmentally regulated alternative transcripts of the gene. Most members of the TACC family discovered so far contain a novel nine amino acid putative phosphorylation site with the pattern [R/K]-X(3)-[E]-X(3)-Y. Genes with sequence homology to the AINT/ERIC/TACC family in other species include maskin in Xenopus, D-TACC in Drosophila and TACC4 in the rabbit. Maskin contains a peptide sequence conserved among eIF-4E binding proteins that is involved in oocyte development. D-TACC cooperates with another conserved microtubule-associated protein Msps to stabilise spindle poles during cell division. The diversity of function already attributed to this protein family, including both transforming and tumour suppressor properties, should ensure that a new and interesting narrative is about to unfold.
Resumo:
Purpose: Cathepsin S is a cysteine protease that promotes the invasion of tumor and endothelial cells during cancer progression. Here we investigated the potential to target cathepsin S using an antagonistic antibody, Fsn0503, to block these tumorigenic effects.
Experimental Design: A panel of monoclonal antibodies was raised to human cathepsin S. The effects of a selected antibody were subsequently determined using invasion and proteolysis assays. Endothelial cell tube formation and aorta sprouting assays were done to examine antiangiogenic effects. In vivo effects were also evaluated using HCT116 xenograft studies.
Results: A selected cathepsin S antibody, Fsn0503, significantly blocked invasion of a range of tumor cell lines, most significantly HCT116 colorectal carcinoma cells, through inhibition of extracellular cathepsin S–mediated proteolysis. We subsequently found enhanced expression of cathepsin S in colorectal adenocarcinoma biopsies when compared with normal colon tissue. Moreover, Fsn0503 blocked endothelial cell capillary tube formation and aortic microvascular sprouting. We further showed that administration of Fsn0503 resulted in inhibition of tumor growth and neovascularization of HCT116 xenograft tumors.
Conclusions: These results show that blocking the invasive and proangiogenic effects of cathepsin S with antibody inhibitors may have therapeutic utility upon further preclinical and clinical evaluation.
Resumo:
Breakdown of the inner blood-retinal barrier (iBRB) occurs early in diabetes and is central to the development of sight-threatening diabetic macular edema (DME) as retinopathy progresses. In the current study, we examined how advanced glycation end products (AGEs) forming early in diabetes could modulate vasopermeability factor expression in the diabetic retina and alter inter-endothelial cell tight junction (TJ) integrity leading to iBRB dysfunction. We also investigated the potential for an AGE inhibitor to prevent this acute pathology and examined a role of the AGE-binding protein galectin-3 (Gal-3) in AGE-mediated cell retinal pathophysiology. Diabetes was induced in C57/BL6 wild-type (WT) mice and in Gal-3(-/-) transgenic mice. Blood glucose was monitored and AGE levels were quantified by ELISA and immunohistochemistry. The diabetic groups were subdivided, and one group was treated with the AGE-inhibitor pyridoxamine (PM) while separate groups of WT and Gal-3(-/-) mice were maintained as nondiabetic controls. iBRB integrity was assessed by Evans blue assay alongside visualisation of TJ protein complexes via occludin-1 immunolocalization in retinal flat mounts. Retinal expression levels of the vasopermeability factor VEGF were quantified using real-time RT-PCR and ELISA. WT diabetic mice showed significant AGE -immunoreactivity in the retinal microvasculature and also showed significant iBRB breakdown (P < .005). These diabetics had higher VEGF mRNA and protein expression in comparison to controls (P < .01). PM-treated diabetics had normal iBRB function and significantly reduced diabetes-mediated VEGF expression. Diabetic retinal vessels showed disrupted TJ integrity when compared to controls, while PM-treated diabetics demonstrated near-normal configuration. Gal-3(-/-) mice showed significantly less diabetes-mediated iBRB dysfunction, junctional disruption, and VEGF expression changes than their WT counterparts. The data suggests an AGE-mediated disruption of iBRB via upregulation of VEGF in the diabetic retina, possibly modulating disruption of TJ integrity, even after acute diabetes. Prevention of AGE formation or genetic deletion of Gal-3 can effectively prevent these acute diabetic retinopathy changes.
Resumo:
Endothelial cell association with vascular basement membranes is complex and plays a critical role in regulation of cell adhesion and proliferation. The interaction between the membrane-associated 67-kd receptor (67LR) and the basement membrane protein laminin has been studied in several cell systems where it was shown to be crucial for adhesion and attachment during angiogenesis. As angiogenesis in the pathological setting of proliferative retinopathy is a major cause of blindness in the Western world we examined the expression of 67LR in a murine model of hyperoxia-induced retinopathy that exhibits retinal neovascularization. Mice exposed to hyperoxia for 5 days starting at postnatal day 7 (P7) and returned to room air (at P12) showed closure of the central retinal vasculature. In response to the ensuing retinal ischemia, there was consistent preretinal neovascularization starting around P17, which persisted until P21, after which the new vessels regressed. Immunohistochemistry was performed on these retinas using an antibody specific for 67LR. At P12, immunoreactivity for 67LR was absent in the retina, but by P17 it was observed in preretinal proliferating vessels and also within the adjacent intraretinal vasculature. Intraretinal 67LR immunoreactivity diminished beyond P17 until by P21 immunoreactivity was almost completely absent, although it persisted in the preretinal vasculature. Control P17 mice (not exposed to hyperoxia) failed to demonstrate any 67LR immunoreactivity in their retinas. Parallel in situ hybridization studies demonstrated 67LR gene expression in the retinal ganglion cells of control and hyperoxia-exposed mice. In addition, the neovascular intra- and preretinal vessels of hyperoxia-treated P17 and P21 mice labeled strongly for 67LR mRNA. This study has characterized 67LR immunolocalization and gene expression in a murine model of ischemic retinopathy. Results suggest that, although the 67LR gene is expressed at high levels in the retinal ganglion cells, the mature receptor protein is preferentially localized to the proliferating retinal vasculature and is almost completely absent from quiescent vessels. The differential expression of 67LR between proliferating and quiescent retinal vessels suggests that this laminin receptor is an important and novel target for future chemotherapeutic intervention during proliferative vasculopathies.
Resumo:
Purpose: This study aimed to evaluate the effects of endostatin on tight junction (TJ) integrity in retinal microvascular endothelial cells (RMECs) in vitro and in vivo. Moreover, it was hypothesized that endostatin-induced occludin upregulation regulated VEGF(165)-mediated increases in endothelial cell permeability and involved activation of the MAPK signaling cascade. Endostatin is a 20-kDa fragment of collagen XVIII that has been shown to be efficacious in the eye by preventing retinal neovascularization. Endostatin is a specific inhibitor of endothelial cell proliferation, migration, and angiogenesis and has been reported to reverse VEGF-mediated increases in vasopermeability and to promote integrity of the blood-retinal barrier (BRB). In order to determine the mechanism of endostatin action on BRB integrity, we have examined the effects of endostatin on a number of intracellular pathways implicated in endothelial cell physiology. Methods: C57/Bl6 mice were injected with VEGF(165) and/or endostatin, and the distribution of occludin staining was determined using retinal flatmounts. Western blot analysis of RMECs treated with VEGF(165) and/or endostatin was used to determine changes in occludin expression and p38 MAPK and extracellular regulated kinase (ERK1/ERK2 MAPK) activation, while FD-4 flux across the RMEC monolayer was used to determine changes in paracellular permeability. Results: Endostatin prevented the discontinuous pattern of occludin staining observed at the retinal blood vessels of mice administered an intraocular injection of VEGF(165). It was shown that endostatin activated p38 MAPK 5 min after addition to RMECs and continued to do so for approximately 30 min. Endostatin was also shown to activate ERK1/ERK2 5 min after addition and continued to do so, albeit with less potency, up to and including 15 min after addition. Inhibition of p38 MAPK and ERK1/ERK2 prevented endostatin's ability to upregulate levels of occludin expression. Inhibition of these key signaling molecules was shown to prevent endostatin's ability to protect against VEGF(165)- mediated increases in paracellular permeability in vitro. However, it appears that p38 MAPK may play a more important role in VEGF-mediated permeability, as inhibition of ERK1/ERK2 will not prevent VEGF(165)- mediated permeability compared with control ( untreated) cells or cells treated with both a p38 MAPK inhibitor and VEGF(165). Conclusions: Occludin is important for the maintenance of tight junction integrity in vivo. In a p38 MAPK and ERK1/ERK2 dependent manner, endostatin was shown to upregulate the levels of expression of the tight junction protein occludin. Inhibition of these key MAPK components may prevent endostatin's ability to decrease VEGF(165)-induced paracellular permeability.
Resumo:
Purpose: Antiangiogenic therapies can be an important adjunct to the management of many malignancies. Here we investigated a novel protein, FKBPL, and peptide derivative for their antiangiogenic activity and mechanism of action.
Experimental Design: Recombinant FKBPL (rFKBPL) and its peptide derivative were assessed in a range of human microvascular endothelial cell (HMEC-1) assays in vitro. Their ability to inhibit proliferation, migration, and Matrigel-dependent tubule formation was determined. They were further evaluated in an ex vivo rat model of neovascularization and in two in vivo mouse models of angiogenesis, that is, the sponge implantation and the intravital microscopy models. Antitumor efficacy was determined in two human tumor xenograft models grown in severe compromised immunodeficient (SCID) mice. Finally, the dependence of peptide on CD44 was determined using a CD44-targeted siRNA approach or in cell lines of differing CD44 status.
Results: rFKBPL inhibited endothelial cell migration, tubule formation, and microvessel formation in vitro and in vivo. The region responsible for FKBPL's antiangiogenic activity was identified, and a 24-amino acid peptide (AD-01) spanning this sequence was synthesized. It was potently antiangiogenic and inhibited growth in two human tumor xenograft models (DU145 and MDA-231) when administered systemically, either on its own or in combination with docetaxel. The antiangiogenic activity of FKBPL and AD-01 was dependent on the cell-surface receptor CD44, and signaling downstream of this receptor promoted an antimigratory phenotype.
Conclusion: FKBPL and its peptide derivative AD-01 have potent antiangiogenic activity. Thus, these agents offer the potential of an attractive new approach to antiangiogenic therapy.
Resumo:
Lipoxygenases (LOX) contribute to vascular disease and inflammation through generation of bioactive lipids, including 12-hydro(pero)xyeicosatetraenoic acid (12-H(P)ETE). The physiological mechanisms that acutely control LOX product generation in mammalian cells are uncharacterized. Human platelets that contain a 12-LOX isoform (p12-LOX) were used to define pathways that activate H( P) ETE synthesis in the vasculature. Collagen and collagen-related peptide (CRP) (1 to 10 mug/mL) acutely induced platelet 12-H(P)ETE synthesis. This implicated the collagen receptor glycoprotein VI ( GPVI), which signals via the immunoreceptor-based activatory motif (ITAM)-containing FcRgamma chain. Conversely, thrombin only activated at high concentrations (> 0.2 U/mL), whereas U46619 and ADP alone were ineffective. Collagen or CRP-stimulated 12-H( P) ETE generation was inhibited by staurosporine, PP2, wortmannin, BAPTA/AM, EGTA, and L-655238, implicating src-tyrosine kinases, PI3-kinase, Ca2+ mobilization, and p12-LOX translocation. In contrast, protein kinase C (PKC) inhibition potentiated 12-H( P) ETE generation. Finally, activation of the immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing platelet endothelial cell adhesion molecule (PECAM-1) inhibited p12-LOX product generation. This study characterizes a receptor-dependent pathway for 12-H(P) ETE synthesis via the collagen receptor GPVI, which is negatively regulated by PECAM-1 and PKC, and demonstrates a novel link between immune receptor signaling and lipid mediator generation in the vasculature.
Resumo:
http://bjo.bmj.com/content/suppl/2001/06/20/85.7.DC1 Leukocyte-endothelial cell interactions play an important role in the pathogenesis of various types of retinal vascular diseases, including diabetes, uveitis, and ischemic lesions. Over the last few years, several methods have been devised in which the scanning laser ophthalmoscope (SLO) is used to study leukocyte-endothelial interactions in vivo [1,2]. Previously we reported a noninvasive in vivo leukocyte tracking method using the SLO in rat. In this method, a nontoxic fluorescent agent (6-carboxyfluorescein diacetate, CFDA) was used to label leukocytes in vitro. Leukocyte velocities within the retinal and choroidal circulations were be quantified simultaneously [3]. None of the previous methods has been developed for imaging the murine fundus, mainly due to problems arising from the small size of the mouse eye. However, there are many advantages of using a murine model to study retinal vascular diseases such as enhanced genetic definition, increased range of reagents available for immunological studies and cost reduction. We have developed our SLO method such that we can track leukocytes in the mouse retinal and choroidal circulations.
Resumo:
This study was conducted to determine the perivascular cell responses to increased endothelial cell expression of insulin-like growth factor binding protein-3 (IGFBP-3) in mouse retina. The contribution of bone marrow cells in the IGFBP-3-mediated response was examined using green fluorescent protein-positive (GFP(+)) adult chimeric mice subjected to laser-induced retinal vessel occlusion injury. Intravitreal injection of an endothelial-specific IGFBP-3-expressing plasmid resulted in increased differentiation of GF(P)+ hematopoietic stem cells (HSCs) into pericytes and astrocytes as determined by immunohistochemical analysis. Administration of IGFBP-3 plasmid to mouse pups that underwent the oxygen-induced retinopathy model resulted in increased pericyte ensheathment and reduced pericyte apoptosis in the developing retina. Increased IGFBP-3 expression reduced the number of activated microglial cells and decreased apoptosis of neuronal cells in the oxygen-induced retinopathy model. In summary, IGFBP-3 increased differentiation of GFP(+) HSCs into pericytes and astrocytes while increasing vascular ensheathment of pericytes and decreasing apoptosis of pericytes and retinal neurons. All of these cytoprotective effects exhibited by IGFBP-3 overexpression can result in a more stable retinal vascular bed. Thus, endothelial expression of IGFBP-3 may represent a physiologic response to injury and may represent a therapeutic strategy for the treatment of ischemic vascular eye diseases, such as diabetic retinopathy and retinopathy of prematurity. (Am J Pathol 2011, 178:1517-1524; DOI: 10.1016/j.ajpath.2010.12.031)