38 resultados para electrical conductivity of poly(p-phenylene sulfide)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we have successfully synthesized Au nanoparticles (NPs) in situ in PEDOT:PSS deploying a room temperature atmospheric pressure microplasma. The size of the AuNPs is a function of the gold salt precursor concentration and the plasma processing time. The Au/polymer colloids after processing remain well dispersed over a prolonged period of time. Both gold salt concentration and the plasma processing time have influence on the electrical conductivity of the dried Au/PEDOT:PSS nanocomposite films. An enhanced electrical conductivity of the Au/PEDOT:PSS nanocomposite films has been attributed to (i) the interfacial ligand formation between the S atoms in PEDOT:PSS molecules and the Au surface and (ii) charge transfer from the AuNPs to the holes of PEDOT:PSS molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the processing and characterization of Polyamide 6 (PA6) / graphite nanoplatelets
(GNPs) composites is reported. PA6/GNPs composites were prepared by melt-mixing using an
industrial, co-rotating, intermeshing, twin-screw extruder. A bespoke screw configuration was used
that was designed in-house to enhance nanoparticle dispersion into a polymer matrix. The effects of
GNPs type (xGnP® M-5 and xGnP® C-500), GNPs content, and extruder screw speed on the bulk
properties of the PA6/GNPs nanocomposites were investigated. Results show a considerable
improvement in the thermal and mechanical properties of PA6/GNPs composites, as compared with
the unfilled PA6 polymer. An increase in crystallinity (%Xc) with increasing GNPs content, and a
change in shape of the crystallization exotherms (broadening) and melting endotherms, both suggest a
change in the crystal type and perfection. An increase in tensile modulus of as much as 376% and
412% was observed for PA6/M-5 xGnP® and PA6/C-500 xGnP® composites, respectively, at filler
contents of 20wt%. The enhancement of Young’s modulus and yield stress can be attributed to the
reinforcing effect of GNPs and their uniform dispersion in the PA6 matrix. The rheological response
of the composite resembles that of a ‘pseudo-solid’, rather than a molten liquid, and analysis of the
rheological data indicates that a percolation threshold was reached at GNPs contents of between 10–
15wt%. The electrical conductivity of the composite also increased with increasing GNPs content,
with an addition of 15wt% GNPs resulting in a 6 order-of-magnitude increase in conductivity. The
electrical percolation thresholds of all composites were between 10–15wt%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and properties of melt mixed high-density polyethylene/multi-walled carbon nanotube (HDPE/MWCNT) composites processed by compression molding and blown film extrusion were investigated to assess the influence of processing route on properties. The addition of MWCNTs leads to a more elastic response during deformations that result in a more uniform thick-ness distribution in the blown films. Blown film composites exhibit better mechanical properties due to the enhanced orientation and disentanglement of MWCNTs. At a blow up ratio (BUR) of 3 the breaking strength and elongation in the machine direction of the film with 4 wt % MWCNTs are 239% and 1054% higher than those of compression molded (CM) samples. Resistivity of the composite films increases significantly with increasing BURs due to the destruction of conductive pathways. These pathways can be recovered partially using an appropriate annealing process. At 8 wt % MWCNTs, there is a sufficient density of nanotubes to maintain a robust network even at high BURs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ni-substituted Sr2Fe1.5-xNixMo0.5O6-δ (SFNM) materials have been investigated as anode catalysts for intermediate temperature solid oxide fuel cells. Reduced samples (x = 0.05 and 0.1) maintained the initial perovskite structure after reduction in H2, while metallic nickel particles were detected on the grain surface for x = 0.2 and 0.3 using transmission electron microscopy. Temperature programmed reduction results indicate that the stable temperature for SFNM samples under reduction conditions decreases with Ni content. In addition, X-ray photoelectron spectroscopy analysis suggests that the incorporation of Ni affects the conductivity of SFNM through changing the ratios of Fe3+/Fe2+ and Mo6+/Mo5+. Sr2Fe1.4Ni0.1Mo0.5O6-δ shows the highest electrical conductivity of 20.6 S cm-1 at 800 °C in H2. The performance of this anode was further tested with electrolyte-supported cells, giving 380 mW cm-2 at 750 °C in H2, hence demonstrating that Ni doping in the B-site is beneficial for Sr2Fe1.5Mo0.5O6-δ anode performance. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the effects of polyethylene glycol (PEG), on the mechanical and thermal properties of nalidixic acid/ploy ε-caprolactone (NA)/PCL blends prepared by hot melt extrusion. The blends were characterized by tensile and flexural analysis, dynamic mechanical analysis, differential scanning calorimetry, thermogravimetric analysis and X-ray diffraction. Experimental data indicated that the addition of NA caused loss of the tensile strength and toughness of PCL. Thermal analysis of the PCL showed that on addition of the thermally unstable NA, thermal degradation occurred early and was autocatalytic. However, the NA did benefit from the heat shielding provided by the PCL matrix resulting in more thermally stable NA particles. Results show that loading PEG in the PCL had a detrimental effect on the tensile strength and toughness of the blends, reducing them by 20-40%. The partial miscibility of the PCL-PEG system, causes an increase in Tg. While increases in the crystallinity is attributed to the plasticisation effect of PEG and the nucleation effect of NA. The average crystal size increased by 8% upon PEG addition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

: High-grade serous ovarian cancer is characterized by genomic instability, with one half of all tumors displaying defects in the important DNA repair pathway of homologous recombination. Given the action of poly(ADP-ribose) polymerase (PARP) inhibitors in targeting tumors with deficiencies in this repair pathway by loss of BRCA1/2, ovarian tumors could be an attractive population for clinical application of this therapy. PARP inhibitors have moved into clinical practice in the past few years, with approval from the Food and Drug Administration (FDA) and European Medicines Agency (EMA) within the past 2 years. The U.S. FDA approval of olaparib applies to fourth line treatment in germline BRCA-mutant ovarian cancer, and European EMA approval to olaparib maintenance in both germline and somatic BRCA-mutant platinum-sensitive ovarian cancer. In order to widen the ovarian cancer patient population that would benefit from PARP inhibitors, predictive biomarkers based on a clear understanding of the mechanism of action are required. Additionally, a better understanding of the toxicity profile is needed if PARP inhibitors are to be used in the curative, rather than the palliative, setting. We reviewed the development of PARP inhibitors in phase I-III clinical trials, including combination trials of PARP inhibitors and chemotherapy/antiangiogenics, the approval for these agents, the mechanisms of resistance, and the outstanding issues, including the development of biomarkers and the rate of long-term hematologic toxicities with these agents.

IMPLICATIONS FOR PRACTICE: The poly(ADP-ribose) polymerase (PARP) inhibitor olaparib has recently received approval from the Food and Drug Administration (FDA) and European Medicines Agency (EMA), with a second agent (rucaparib) likely to be approved in the near future. However, the patient population with potential benefit from PARP inhibitors is likely wider than that of germline BRCA mutation-associated disease, and biomarkers are in development to enable the selection of patients with the potential for clinical benefit from these agents. Questions remain regarding the toxicities of PARP inhibitors, limiting the use of these agents in the prophylactic or adjuvant setting until more information is available. The indications for olaparib as indicated by the FDA and EMA are reviewed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene, with its unique electronic and structural qualities, has become an important playground for studying adsorption and assembly of various materials including organic molecules. Moreover, organic/graphene vertical structures assembled by van der Waals interaction have potential for multifunctional device applications. Here, we investigate structural and electrical properties of vertical heterostructures composed of C60 thin film on graphene. The assembled film structure of C60 on graphene is investigated using transmission electron microscopy, which reveals a uniform morphology of C60 film on graphene with a grain size as large as 500 nm. The strong epitaxial relations between C60 crystal and graphene lattice directions are found, and van der Waals ab initio calculations support the observed phenomena. Moreover, using C60-graphene heterostructures, we fabricate vertical graphene transistors incorporating n-type organic semiconducting materials with an on/off ratio above 3 × 10(3). Our work demonstrates that graphene can serve as an excellent substrate for assembly of molecules, and attained organic/graphene heterostructures have great potential for electronics applications.