36 resultados para elbow flexion


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Wing-Kristofferson (WK) model of movement timing emphasises the separation of central timer and motor processes. Several studies of repetitive timing have shown that increase in variability at longer intervals is attributable to timer processes; however, relatively little is known about the way motor aspects of timing are affected by task movement constraints. In the present study, we examined timing variability in finger tapping with differences in interval to assess central timer effects, and with differences in movement amplitude to assess motor implementation effects. Then, we investigated whether effects of motor timing observed at the point of response (flexion offset/tap) are also evident in extension, which would suggest that both phases are subject to timing control. Eleven participants performed bimanual simultaneous tapping, at two target intervals (400, 600 ms) with the index finger of each hand performing movements of equal (3 or 6 cm) or unequal amplitude (left hand 3, right hand 6 cm and vice versa). As expected, timer variability increased with the mean interval but showed only small, non-systematic effects with changes in movement amplitude. Motor implementation variability was greater in unequal amplitude conditions. The same pattern of motor variability was observed both at flexion and extension phases of movement. These results suggest that intervals are generated by a central timer, triggering a series of events at the motor output level including flexion and the following extension, which are explicitly represented in the timing system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human motor behaviour is continually modified on the basis of errors between desired and actual movement outcomes. It is emerging that the role played by the primary motor cortex (M1) in this process is contingent upon a variety of factors, including the nature of the task being performed, and the stage of learning. Here we used repetitive TMS to test the hypothesis that M1 is intimately involved in the initial phase of sensorimotor adaptation. Inhibitory theta burst stimulation was applied to M1 prior to a task requiring modification of torques generated about the elbow/forearm complex in response to rotations of a visual feedback display. Participants were first exposed to a 30° clockwise (CW) rotation (Block A), then a 60° counterclockwise rotation (Block B), followed immediately by a second block of 30° CW rotation (A2). In the STIM condition, participants received 20s of continuous theta burst stimulation (cTBS) prior to the initial A Block. In the conventional (CON) condition, no stimulation was applied. The overt characteristics of performance in the two conditions were essentially equivalent with respect to the errors exhibited upon exposure to a new variant of the task. There were however, profound differences between the conditions in the latency of response preparation, and the excitability of corticospinal projections from M1, which accompanied phases of de-adaptation and re-adaptation (during Blocks B and A2). Upon subsequent exposure to the A rotation 24h later, the rate of re-adaptation was lower in the stimulation condition than that present in the conventional condition. These results support the assertion that primary motor cortex assumes a key role in a network that mediates adaptation to visuomotor perturbation, and emphasise that it is engaged functionally during the early phase of learning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of vision on the excitability of corticospinal projections to the flexor carpi radialis (FCR) and extensor carpi radialis (ECR) muscles of right human forearm was investigated before and during discrete movement of the opposite limb. An external force opposed the initial phase of the movement (wrist flexion) and assisted the reverse phase, so that recruitment of the wrist extensors was minimized. Three conditions were used as follows: viewing the inactive right limb (Vision), viewing the mirror image of the moving left limb (Mirror), and with vision of the right limb occluded (No Vision). Transcranial magnetic stimulation was delivered to the left motor cortex: before, at the onset of, or during the left limb movement to obtain motor evoked potentials (MEPs) in the muscles of the right forearm. At and following movement onset, MEPs obtained in the right FCR were smaller in the Vision condition than in the Mirror and No Vision conditions. A distinct pattern of variation was obtained for the ECR. In all conditions, MEPs in this muscle were elevated upon or following movement of the opposite limb. An additional analysis of ipsilateral silent periods indicated that interhemispheric inhibition plays a role in mediating these effects. Activity-dependent changes in corticospinal output to a resting limb during discrete actions of the opposite limb are thus directly contingent upon where one looks. Furthermore, the extent to which vision exerts an influence upon projections to specific muscles varies in accordance with the functional contribution of their homologs to the intended action.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When permitted access to the appropriate forms of rehabilitation, many severely affected stroke survivors demonstrate a capacity for upper limb functional recovery well in excess of that formerly considered possible. Yet, the mechanisms through which improvements in arm function occur in such profoundly impaired individuals remain poorly understood. An exploratory study was undertaken to investigate the capacity for brain plasticity and functional adaptation, in response to 12-h training of reaching using the SMART Arm device, in a group of severely affected stroke survivors with chronic upper limb paresis. Twenty-eight stroke survivors were enroled. Eleven healthy adults provided normative data. To assess the integrity of ipsilateral and contralateral corticospinal pathways, transcranial magnetic stimulation was applied to evoke responses in triceps brachii during an elbow extension task. When present, contralateral motor-evoked potentials (MEPs) were delayed and reduced in amplitude compared to those obtained in healthy adults. Following training, contralateral responses were more prevalent and their average onset latency was reduced. There were no reliable changes in ipsilateral MEPs. Stroke survivors who exhibited contralateral MEPs prior to training achieved higher levels of arm function and exhibited greater improvements in performance than those who did not initially exhibit contralateral responses. Furthermore, decreases in the onset latency of contralateral MEPs were positively related to improvements in arm function. Our findings demonstrate that when severely impaired stroke survivors are provided with an appropriate rehabilitation modality, modifications of corticospinal reactivity occur in association with sustained improvements in upper limb function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solid particle erosion is a major concern in the engineering industry, particularly where transport of slurry flow is involved. Such flow regimes are characteristic of those in alumina refinement plants. The entrainment of particulate matter, for example sand, in the Bayer liquor can cause severe erosion in pipe fittings, especially in those which redirect the flow. The considerable costs involved in the maintenance and replacement of these eroded components led to an interest in research into erosion prediction by numerical methods at Rusal Aughinish alumina refinery, Limerick, Ireland, and the University of Limerick. The first stage of this study focused on the use of computational fluid dynamics (CFD) to simulate solid particle erosion in elbows. Subsequently an analysis of the factors that affect erosion of elbows was performed using design of experiments (DOE) techniques. Combining CFD with DOE harnesses the computational power of CFD in the most efficient manner for prediction of elbow erosion. An analysis of the factors that affect the erosion of elbows was undertaken with the intention of producing an erosion prediction model. © 2009 Taylor & Francis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PROGNOSTIC FACTORS PREDICTING FUNCTIONAL OUTCOME AT FOUR MONTHS FOLLOWING ACUTE ANKLE SPRAINBleakley C.M.1, O'Connor S.R.1, Tully M.A.2, Rocke L.G.3, MacAuley D.C.1, Bradbury I.4, Keegan S.4, McDonough S.M.11University of Ulster, Health & Rehabilitation Sciences Research Institute, Newtownabbey, United Kingdom, 2Queen's University, UKCRC Centre of Excellence for Public Health (NI), Belfast, United Kingdom, 3Royal Victoria Hospital, Department of Emergency Medicine, Belfast, United Kingdom, 4Frontier Science (Scotland), Kincraig, Inverness-shire, United KingdomPurpose: To identify clinically relevant factors assessed following acute ankle sprain that predict functional recovery at four months post-injury.Relevance: Ankle sprains are one of the most common musculoskeletal injuries with an estimated 5000 new cases occurring each day in the United Kingdom. In the acute phase, ankle sprains may be associated with pain and loss of function. In the longer-term there is a risk of residual problems including chronic pain or reinjury. Few studies have sought to examine factors associated with a poor long-term prognosis.Participants: 101 patients (Age: Mean (SD) 25.9 (7.9) years; Body Mass Index (BMI): 25.3 (3.5) kg/m2) with an acute grade 1 or 2 ankle sprain attending an accident and emergency department or sports injury clinic. Exclusion criteria included complete (grade 3) rupture of the ankle ligament complex, bony ankle injury or multiple injuries.Methods: Participants were allocated as part of a randomised controlled trial to an accelerated intervention incorporating intermittent ice and early therapeutic exercise or a standard protection, rest, ice, compression, and elevation intervention for one week. Treatment was then standardised in both groups and consisted of ankle rehabilitation exercises focusing on muscle strengthening, neuromuscular training, and sports specific functional exercises for a period of approximately four to six weeks. On initial assessment age, gender, mechanism of injury, presence of an audible pop or snap and the presence of contact during the injury were recorded. The following factors were also recorded at baseline and at one and four weeks post-injury: weight-bearing dorsi-flexion test, lateral hop test, presence of medial pain on palpation and a positive impingement sign. Functional status was assessed using the Karlsson score at baseline, at week four and at four months. Reinjury rates were recorded throughout the intervention phase and at four months.Analysis: A mixed between-within subjects analysis of variance (ANOVA) was used to determine the effect of each factor on functional status at week four and at four months. Significance was set at a Bonferroni adjusted level of 0.0125 (0.05/4).Results: Eighty-five participants (84%) were available at final follow-up assessment. Pain on weight-bearing dorsi-flexion and lateral hop tests at week four were both associated with a lower functional score at four months post-injury (P = 0.011 and P = 0.001). No other significant interactions were observed at any other timepoint (baseline or week one). There were only two reinjuries within the four month follow-up period with a further two reported at approximately six months post-injury. We were therefore unable to determine whether any factors were associated with an increased risk of reinjury.Conclusions: Potential prognostic factors on initial or early examination after acute ankle sprain did not help predict functional recovery at four months post-injury. However, pain on weight-bearing dorsi-flexion and lateral hop tests observed at four weeks were associated with a slower rate of recovery.Implications: Some clinical tests may help identify patients at risk of poor functional recovery after acute ankle sprain. However, further work is required to examine factors which may be predictive on initial assessment.Key-words: 1. Prognostic factors 2. Recovery 3. Ankle sprainFunding acknowledgements: Physiotherapy Research Foundation, Chartered Society of Physiotherapy, Strategic Priority Fund; Department of Employment and Learning, Northern Ireland.Ethics approval: Office for Research Ethics Committee (UK).