73 resultados para eastern cottonwood
Resumo:
ABSTRACT High resolution records of mid-late Holocene hydro-climatic change are presented from Mer Bleue Bog, eastern Ontario. Past climatic changes in this region have previously been inferred from lake sediments, but rain-fed peatlands can offer additional insights into the spatial and temporal pattern of moisture availability. In this study, reconstructed water table depths are based on a testate amoeba-derived transfer function developed for the region and changes in bog surface wetness are compared with plant macrofossil and peat humification data.
RÉSUMÉ Nous présentons les enregistrements hautes résolutions des variations hydrologique durant la second moitié de l’Holocène pour les tourbières Mer Bleue á l’est de l'Ontario. Précédemment, les changements climatiques de cette région ont été dérivés à partir de prélèvement de sédiments de lac. Mais ils s’avèrent que les tourbières ombrotrophes offrir un éclairage supplémentaire sur les schémas de répartition spatiale et temporelle de la disponibilité de l'humidité. Dans cette étude, des profondeurs reconstruites de nappe phréatique sont basées sur un modèle de function de transfert d’amibes (Arcellinida) et des changements de l’humidité de surface de la tourbière sont comparés avec les macrofossils et au humification de tourbe dans une analyse multi-proxy.
Resumo:
Iron Age societies of the eastern Eurasian steppe are traditionally viewed as nomadic pastoralists. However, recent archaeological and anthropological research in Kazakhstan has reminded us that pastoralist economies can be highly complex and involve agriculture. This paper explores the nature of the pastoralist economies in two Early Iron Age populations from the burial grounds of Ai-Dai and Aymyrlyg in Southern Siberia. These populations represent two cultural groups of the Scythian World - the Tagar Culture of the Minusinsk Basin and the Uyuk Culture of Tuva. Analysis of dental palaeopathology and carbon and nitrogen stable isotopes suggests that domesticated cereals, particularly millet, and fish formed a major component of the diet of both groups. The findings contribute to the emerging picture of the nuances of Early Iron Age subsistence strategies on the eastern steppe.
Resumo:
The mid-Holocene decline of Tsuga canadensis (hereafter Tsuga) populations across eastern North America is widely perceived as a synchronous event, driven by pests/pathogens, rapid climate change, or both. Pattern identification and causal attribution are hampered by low stratigraphic density of pollen-sampling and radiometric dates at most sites, and by absence of highly resolved, paired pollen and paleoclimate records from single sediment cores, where chronological order of climatic and vegetational changes can be assessed. We present an intensely sampled (contiguous 1-cm intervals) record of pollen and water table depth (inferred from testate amoebae) from a single core spanning the Tsuga decline at Irwin Smith Bog in Lower Michigan, with high-precision chronology. We also present an intensively sampled pollen record from Tower Lake in Upper Michigan. Both sites show high-magnitude fluctuations in Tsuga pollen percentages during the pre-decline maximum. The terminal decline is dated at both sites ca. 5000 cal yr BP, some 400 years later than estimates from other sites and data compilations. The terminal Tsuga decline was evidently heterochronous across its range. A transient decline ca. 5350 cal yr BP at both sites may correspond to the terminal decline at other sites in eastern North America. At Irwin Smith Bog, the terminal Tsuga decline preceded an abrupt and persistent decline in water table depths by;200 years, suggesting the decline was not directly driven by abrupt climate change. The Tsuga decline may best be viewed as comprising at least three phases: a long-duration predecline maximum with high-magnitude and high-frequency fluctuations, followed by a terminal decline at individual sites, followed in turn by two millennia of persistently low Tsuga populations. These phases may not be causally linked, and may represent dynamics taking place at multiple temporal and spatial scales. Further progress toward understanding the phenomenon requires an expanded network of high-resolution pollen and paleoclimate chronologies.
Resumo:
Last interglacial sediments in unglaciated Alaska and Yukon (eastern Beringia) are commonly identified by palaeoecological indicators and stratigraphic position ~2-5m above the regionally prominent Old Crow tephra (124±10ka). We demonstrate that this approach can yield erroneous age assignments using data from a new exposure at the Palisades, a site in interior Alaska with numerous exposures of last interglacial sediments. Tephrochronology, stratigraphy, plant macrofossils, pollen and fossil insects from a prominent wood-rich organic silt unit are all consistent with a last interglacial age assignment. However, six 14C dates on plant and insect macrofossils from the organic silt range from non-finite to 4.0 14C ka BP, indicating that the organic silt instead represents a Holocene deposit with a mixed-age assemblage of organic material. In contrast, wood samples from presumed last interglacial organic-rich sediments elsewhere at the Palisades, in a similar stratigraphic position with respect to Old Crow tephra, yield non-finite 14C ages. Given that local permafrost thaw since the last interglaciation may facilitate reworking of older sediments into new stratigraphic positions, minimum constraining ages based on 14C dating or other methods should supplement age assignments for last interglacial sediments in eastern Beringia that are based on palaeoecology and stratigraphic association with Old Crow tephra.