137 resultados para diurnal charging profile
Resumo:
Planar periodic metallic arrays behave as artificial magnetic conductor (AMC) surfaces when placed on a grounded dielectric substrate and they introduce a zero degrees reflection phase shift to incident waves. In this paper the AMC operation of single-layer arrays without vias is studied using a resonant cavity model and a new application to high-gain printed antennas is presented. A ray analysis is employed in order to give physical insight into the performance of AMCs and derive design guidelines. The bandwidth and center frequency of AMC surfaces are investigated using full-wave analysis and the qualitative predictions of the ray model are validated. Planar AMC surfaces are used for the first time as the ground plane in a high-gain microstrip patch antenna with a partially reflective surface as superstrate. A significant reduction of the antenna profile is achieved. A ray theory approach is employed in order to describe the functioning of the antenna and to predict the existence of quarter wavelength resonant cavities.
Resumo:
A planar artificial magnetic conductor (AMC) ground plane is proposed as a means to reduce the profile of a highly directive resonant cavity antenna. The structure is formed by a printed microstrip patch antenna and a superimposed partially reflective surface. The antenna profile is reduced to approximately half by virtue of employing the AMC ground plane. A ray theory model is used to qualitatively describe the functioning of the antenna and theoretically predict the existence of quarter wavelength resonant cavities.
Resumo:
The proton radiography technique has been used to investigate the incidence of a 3 x10(19) W/cm(2) infrared pulse with a 125 mu m-diameter gold wire. The laser interaction is observed to drive the growth of a radial electric field similar to 10(10) V/m on the surface of the wire which rises and decays over a temporal window of 20 ps. Such studies of the ultrafast charging of a solid irradiated at high-intensity may be of relevance to schemes for laser-driven ion acceleration and the fast-ignitor concept for inertial confinement fusion.
Resumo:
Background: The image of cocaine as a 'party' drug used by more affluent members of society has begun to change as the levels of use of the drug rise amongst school aged young people. Methods: Cocaine use patterns amongst young people aged 13-16 years who were participating in the Belfast Youth Development Study, a longitudinal study of adolescent drug use was explored. Data was collected through an annual datasweep in participating schools. This paper includes data collected in years 3, 4 and 5 of the study. Results: The results show higher levels of cocaine use amongst this age group than reported in much of the existing harm reduction literature. Lifetime use was 3.8% at age 13-14 years, rising to 7.5% at 15-16 years. The profile indicated that adolescent cocaine users were more likely to be female, live in disrupted families and experience social deprivation which is similar to existing adolescent drug use profiles. There was also some evidence of experimental cocaine use amongst the sample. Conclusions: These findings provide further evidence for the development of age appropriate school focused harm reduction initiatives and continued monitoring of contemporary trends of use of cocaine amongst school aged young people.
Resumo:
The compression of a finite extent Gaussian laser pulse in collisional plasma is investigated. An analytical model is employed to describe the spatiotemporal evolution of a laser pulse propagating through the plasma medium. The pulse geometry is modeled via an appropriate ansatz which takes into account both beam radius (in space) and pulse width (in time). Compression and self-focusing are taken into account via appropriated group velocity dispersion and nonlinearity terms. The competition among the collisional nonlinearity in the plasma and the effect of divergence due to diffraction is pointed out and investigated numerically. Our results suggest that laser pulse compression and intensity localization is enhanced by plasma collisionality. In specific, a pulse width compression by an order of magnitude approximately is observed, for typical collisional laser plasma parameters, along with a significant increase in the intensity.