39 resultados para digital terrain analysis
Resumo:
Indicator inks, previously shown to be capable of rapidly assessing photocatalytic activity via a novel photo-reductive mechanism, were simply applied via an aerosol spray onto commercially available pieces of Activ (TM) self-cleaning glass. Ink layers could be applied with high evenness of spread, with as little deviation as 5% upon UV-visible spectroscopic assessment of 25 equally distributed positions over a 10 cm x 10 cm glass cut. The inks were comprised of either a resazurin (Rz) or dichloroindophenol (DCIP) redox dye with a glycerol sacrificial electron donor in an aqueous hydroxyethyl cellulose (HEC) polymer media. The photo-reduction reaction under UVA light of a single spot was monitored by UV-vis spectroscopy and digital images attained from a flat-bed scanner in tandem for both inks. The photo-reduction of Rz ink underwent a two-step kinetic process, whereby the blue redox dye was initially reduced to a pink intermediate resorufin (Rf) and subsequently reduced to a bleached form of the dye. In contrast, a simple one-step kinetic process was observed for the reduction of the light blue redox dye DCIP to its bleached intermediates. Changes in red-green-blue colour extracted from digital images of the inks were inversely proportional to the changes seen at corresponding wavelengths via UV-visible absorption spectroscopy and wholly indicative of the reaction kinetics. The photocatalytic activity areas of cuts of Activ (TM) glass, 10 cm x 10 cm in size, were assessed using both Rz and DCIP indicator inks evenly sprayed over the films: firstly using UVA lamp light to activate the underlying Activ (TM) film (1.75 mW cm(-2)) and secondly under solar conditions (2.06 +/- 0.14 mW cm(-2)). The photo-reduction reactions were monitored solely by flat-bed digital scanning. Red-green-blue values of a generated 14 x 14 grid (196 positions) that covered the entire area of each film image were extracted using a Custom-built program entitled RGB Extractor(C). A homogenous degradation over the 196 positions analysed for both Rz (Red colour deviation = 19% UVA, 8% Solar: Green colour deviation = 17% UVA, 12% Solar) and DCIP (Red colour deviation = 22% UVA, 16% Solar) inks was seen in both UVA and solar experiments, demonstrating the consistency of the self-cleaning titania layer on Activ (TM). The method presented provides a good solution for the high-throughput photocatalytic screening of a number of homogenous photocatalytically active materials simultaneously or numerous positions on a single film; both useful in assessing the homogeneity of a film or determining the best combination of reaction components to produce the optimum performance photocatalytic film. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Traditionally, education and training in pathology has been delivered using textbooks, glass slides and conventional microscopy. Over the last two decades, the number of web-based pathology resources has expanded dramatically with centralized pathological resources being delivered to many students simultaneously. Recently, whole slide imaging technology allows glass slides to be scanned and viewed on a computer screen via dedicated software. This technology is referred to as virtual microscopy and has created enormous opportunities in pathological training and education. Students are able to learn key histopathological skills, e.g. to identify areas of diagnostic relevance from an entire slide, via a web-based computer environment. Students no longer need to be in the same room as the slides. New human–computer interfaces are also being developed using more natural touch technology to enhance the manipulation of digitized slides. Several major initiatives are also underway introducing online competency and diagnostic decision analysis using virtual microscopy and have important future roles in accreditation and recertification. Finally, researchers are investigating how pathological decision-making is achieved using virtual microscopy and modern eyetracking devices. Virtual microscopy and digital pathology will continue to improve how pathology training and education is delivered.
Resumo:
The distribution of glacial cirques upon the Kamchatka peninsula, Far Eastern Russia, is systematically mapped from satellite images and digital elevation model data. A total of 3,758 cirques are identified, 238 of which are occupied by active glaciers. The morphometry of the remaining 3,520 cirques is analysed. These cirques are found to show a very strong N bias in their azimuth (orientation), likely resulting from aspect-related variations in insolation. The strength of this N bias is considered to indicate that former glaciation upon the peninsula was often ‘marginal’, and mainly of cirque-type, with peaks extending little above regional equilibrium-line altitudes. This is supported by the fact that S and SE-facing cirques are the highest in the dataset, suggesting that glacier-cover was rarely sufficient to allow S and SE-facing glaciers to develop at low altitudes. The strength of these azimuth-related variations in cirque altitude is thought to reflect comparatively cloud-free conditions during former periods of glaciation. It is suggested that these characteristics, of marginal glaciation and comparatively cloud-free conditions, reflect the region’s former aridity, which was likely intensified at the global Last Glacial Maximum, and during earlier periods of ice advance, as a result of the development of negative pressure anomalies over the North Pacific (driven by the growth of the Laurentide Ice Sheet), combined with other factors, including an increase in the extent and duration of sea ice, a reduction in global sea levels, cooler sea surface temperatures, and the localised growth of mountain glaciers. There is published evidence to suggest extensive glaciation of the Kamchatka Peninsula at times during the Late Quaternary, yet the data presented here appears to suggest that such phases were comparatively short-lived, and that smaller cirque-type glaciers were generally more characteristic of the period.
Resumo:
A substantial amount of the 'critical mass' of digital data available to scholarship contains place-names, and it is now recognised that spatial and temporal data points, including place-names, are a vital part of the e-research infrastructure that supports the use, re-use and advanced analysis of data using ICT tools and methods. Place-names can also be linked semantically to contribute to the web of data, and to enrich content through linking existing data, and identifying new collections for digitization to strategically enhance existing digital collections. However, existing e-projects rely on modern gazetteers limiting them to the modern and the near-contemporary. This workshop explored how to further integrate the wealth of historical place-name scholarship, and the resulting digital resources generated within UK academia, so enabling integration of local knowledge over much longer periods.
Resumo:
Recently, two fast selective encryption methods for context-adaptive variable length coding and context-adaptive binary arithmetic coding in H.264/AVC were proposed by Shahid et al. In this paper, it was demonstrated that these two methods are not as efficient as only encrypting the sign bits of nonzero coefficients. Experimental results showed that without encrypting the sign bits of nonzero coefficients, these two methods can not provide a perceptual scrambling effect. If a much stronger scrambling effect is required, intra prediction modes, and the sign bits of motion vectors can be encrypted together with the sign bits of nonzero coefficients. For practical applications, the required encryption scheme should be customized according to a user's specified requirement on the perceptual scrambling effect and the computational cost. Thus, a tunable encryption scheme combining these three methods is proposed for H.264/AVC. To simplify its implementation and reduce the computational cost, a simple control mechanism is proposed to adjust the control factors. Experimental results show that this scheme can provide different scrambling levels by adjusting three control factors with no or very little impact on the compression performance. The proposed scheme can run in real-time and its computational cost is minimal. The security of the proposed scheme is also discussed. It is secure against the replacement attack when all three control factors are set to one.
Resumo:
The effect of preparation design and the physical properties of the interface lute on the restored machined ceramic crown-tooth complex are poorly understood. The aim of this work was to determine, by means of three-dimensional finite element analysis (3D FEA) the effect of the tooth preparation design and the elastic modulus of the cement on the stress state of the cemented machined ceramic crown-tooth complex. The three-dimensional structure of human premolar teeth, restored with adhesively cemented machined ceramic crowns, was digitized with a micro-CT scanner. An accurate, high resolution, digital replica model of a restored tooth was created. Two preparation designs, with different occlusal morphologies, were modeled with cements of 3 different elastic moduli. Interactive medical image processing software (mimics and professional CAD modeling software) was used to create sophisticated digital models that included the supporting structures; periodontal ligament and alveolar bone. The generated models were imported into an FEA software program (hypermesh version 10.0, Altair Engineering Inc.) with all degrees of freedom constrained at the outer surface of the supporting cortical bone of the crown-tooth complex. Five different elastic moduli values were given to the adhesive cement interface 1.8 GPa, 4 GPa, 8 GPa, 18.3 GPa and 40 GPa; the four lower values are representative of currently used cementing lutes and 40 GPa is set as an extreme high value. The stress distribution under simulated applied loads was determined. The preparation design demonstrated an effect on the stress state of the restored tooth system. The cement elastic modulus affected the stress state in the cement and dentin structures but not in the crown, the pulp, the periodontal ligament or the cancellous and cortical bone. The results of this study suggest that both the choice of the preparation design and the cement elastic modulus can affect the stress state within the restored crown-tooth complex.
Resumo:
The overall aim of this study was to assess the accuracy, reproducibility and stability of a high resolution passive stereophotogrammetry system to image a female mannequin torso, to validate measurements made on the textured virtual surface compared with those obtained using manual techniques and to develop an approach to make objective measurements of the female breast. 3D surface imaging was carried out on a textured female torso and measurements made in accordance with the system of mammometrics. Linear errors in measurements were less than 0.5 mm, system calibration produced errors of less than 1.0 mm over 94% over the surface and intra-rater reliability measured by ICC = 0.999. The mean difference between manual and digital curved surface distances was 1.36 mm with maximum and minimum differences of 3.15 mm and 0.02 mm, respectively. The stereophotogrammetry system has been demonstrated to perform accurately and reliably with specific reference to breast assessment. (C) 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Resumo:
This paper presents initial results of evaluating suitability of the conventional two-tone CW passive intermodulation (PIM) test for characterization of modulated signal distortion by passive nonlinearities in base station antennas and RF front-end. A comprehensive analysis of analog and digitally modulated waveforms in the transmission lines with weak distributed nonlinearity has been performed using the harmonic balance analysis and X-parameters in Advanced Design System (ADS) simulator. The nonlinear distortion metrics used in the conventional two-tone CW PIM test have been compared with the respective spectral metrics applied to the modulated waveforms, such as adjacent channel power ratio (ACPR) and error vector magnitude (EVM). It is shown that the results of two-tone CW PIM tests are consistent with the metrics used for assessment of signal integrity of both analog and digitally modulated waveforms.
Resumo:
This study introduces an inexact, but ultra-low power, computing architecture devoted to the embedded analysis of bio-signals. The platform operates at extremely low voltage supply levels to minimise energy consumption. In this scenario, the reliability of static RAM (SRAM) memories cannot be guaranteed when using conventional 6-transistor implementations. While error correction codes and dedicated SRAM implementations can ensure correct operations in this near-threshold regime, they incur in significant area and energy overheads, and should therefore be employed judiciously. Herein, the authors propose a novel scheme to design inexact computing architectures that selectively protects memory regions based on their significance, i.e. their impact on the end-to-end quality of service, as dictated by the bio-signal application characteristics. The authors illustrate their scheme on an industrial benchmark application performing the power spectrum analysis of electrocardiograms. Experimental evidence showcases that a significance-based memory protection approach leads to a small degradation in the output quality with respect to an exact implementation, while resulting in substantial energy gains, both in the memory and the processing subsystem.