45 resultados para derogatory labels
Resumo:
In trying to understand the effects of political parties on shaping the voting behaviour of legislators, research has attempted the difficult task of separating the effects of preferences from rules used by party leaders to enforce discipline. However, little research has explored the prospect that party labels also reflect a social identity that is independent of legislators’ preferences and the rules used by party leaders to enforce discipline. In this study we examine that possibility, employing a data set that permits us to control both for leadership-based effects and legislator preferences on a 2000 free vote dealing with stem cell research. Using the British Representation Studies 1997 – which interviewed Members of Parliament regarding their preferences on several key issues related to the bill – we find significant evidence that party-as-identification plays a role in shaping how legislators vote, even after preferences and discipline are accounted for.
Resumo:
Real-world graphs or networks tend to exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Much effort has been directed into creating realistic and tractable models for unlabelled graphs, which has yielded insights into graph structure and evolution. Recently, attention has moved to creating models for labelled graphs: many real-world graphs are labelled with both discrete and numeric attributes. In this paper, we presentAgwan (Attribute Graphs: Weighted and Numeric), a generative model for random graphs with discrete labels and weighted edges. The model is easily generalised to edges labelled with an arbitrary number of numeric attributes. We include algorithms for fitting the parameters of the Agwanmodel to real-world graphs and for generating random graphs from the model. Using real-world directed and undirected graphs as input, we compare our approach to state-of-the-art random labelled graph generators and draw conclusions about the contribution of discrete vertex labels and edge weights to graph structure.
Resumo:
Automatically determining and assigning shared and meaningful text labels to data extracted from an e-Commerce web page is a challenging problem. An e-Commerce web page can display a list of data records, each of which can contain a combination of data items (e.g. product name and price) and explicit labels, which describe some of these data items. Recent advances in extraction techniques have made it much easier to precisely extract individual data items and labels from a web page, however, there are two open problems: 1. assigning an explicit label to a data item, and 2. determining labels for the remaining data items. Furthermore, improvements in the availability and coverage of vocabularies, especially in the context of e-Commerce web sites, means that we now have access to a bank of relevant, meaningful and shared labels which can be assigned to extracted data items. However, there is a need for a technique which will take as input a set of extracted data items and assign automatically to them the most relevant and meaningful labels from a shared vocabulary. We observe that the Information Extraction (IE) community has developed a great number of techniques which solve problems similar to our own. In this work-in-progress paper we propose our intention to theoretically and experimentally evaluate different IE techniques to ascertain which is most suitable to solve this problem.
Resumo:
In this paper, we propose a new learning approach to Web data annotation, where a support vector machine-based multiclass classifier is trained to assign labels to data items. For data record extraction, a data section re-segmentation algorithm based on visual and content features is introduced to improve the performance of Web data record extraction. We have implemented the proposed approach and tested it with a large set of Web query result pages in different domains. Our experimental results show that our proposed approach is highly effective and efficient.
Resumo:
Carbon distribution within perennial ryegrass was determined at different stages of plant development, by pulse-labelling laboratory and field-grown plants with 14C-CO2. During the early stages of growth (23-51 days), C distribution of laboratory grown plants was not markedly affected by plant age, with 12.4-24% of net assimilated label lost into the soil as root-soil respiration. The percentage of net assimilate translocated below ground was 20-28% during this stage of growth. At 65 days, the percentage of the label translocated below ground decreased to 8.1% of the net assimilate, with a subsequent decrease in root-soil respiration to 3.9%. The ability of the plant to fix the label (expressed in MBq g-1 oven dry total plant weight) decreased steadily as the plants aged. When the 30 day old plants were subjected to water stress (soil water potential -1.5 MPa) for 2 days before pulse-labelling, root-soil respiration of the pulse-label decreased compared with plants grown at field capacity. The distribution of a 14C pulse-label within perennial ryegrass grown under field conditions was found to be dependent on the age of the plants. For 4 week old plants, 67% of net assimilated label was translocated below ground, with 64.8% of this respired by the roots and soil. Less label was translocated below ground at subsequent pulse-labels from weeks 8 to 24. The proportion of label translocated below ground respired by the roots and soil also decreased. The investment of label in the plant shoots was found to be greater in field grown plants as compared to plants of the same age grown in a controlled, laboratory environment. © 1990.
Resumo:
Health reform practices in Canada and elsewhere have restructured the purpose and use of diagnostic labels and the processes of naming such labels. Diagnoses are no longer only a means to tell doctors and patients what may be wrong and indicate potential courses of treatment; some diagnoses activate specialized services and supports for persons with a disability and those who provide care for them. In British Columbia, a standardized process of diagnosis with the outcome of an autism spectrum disorder gives access to government provided health care and educational services and supports. Such processes enter individuals into a complex of text mediated relations, regulated by the principles of evidence-based medicine. However, the diagnosis of autism in children is notoriously uncertain. Because of this ambiguity, standardizing the diagnostic process creates a hurdle in gaining help and support for parents who have children with problems that could lead to a diagnosis on the autism spectrum. Such processes and their organizing relations are problematized, explored and explicated below. Grounded in the epistemological and ontological shift offered by Dorothy E. Smith (1987; 1990a; 1999; 2005), this article reports on the findings of an institutional ethnographic study that explored the diagnostic process of autism in British Columbia. More specifically, this article focuses on the processes involved in going from mothers talking from their experience about their childrens problems to the formalized and standardized, and thus “virtually” produced, diagnoses that may or may not give access to services and supports in different systems of care. Two psychologists, a developmental pediatrician, a social worker – members of a specialized multidisciplinary assessment team – and several mothers of children with a diagnosis on the autism spectrum were interviewed. The implications of standardizing the diagnosis process of a disability that is not clear-cut and has funding attached are discussed. This ethnography also provides a glimpse of the implications of current and ongoing reforms in the state-supported health care system in British Columbia, and more generally in Canada, for people’s everyday doings.
Resumo:
Inland waters are of global biogeochemical importance receiving carbon inputs of ~ 4.8 Pg C y-1. Of this 12 % is buried, 18 % transported to the oceans, and 70 % supports aquatic secondary production. However, the mechanisms that determine the fate of organic matter (OM) in these systems are poorly defined. One important aspect is the formation of organo-mineral complexes in aquatic systems and their potential as a route for OM transport and burial vs. their use potential as organic carbon (C) and nitrogen (N) sources. Organo-mineral particles form by sorption of dissolved OM to freshly eroded mineral surfaces and may contribute to ecosystem-scale particulate OM fluxes. We tested the availability of mineral-sorbed OM as a C & N source for streamwater microbial assemblages and streambed biofilms. Organo-mineral particles were constructed in vitro by sorption of 13C:15N-labelled amino acids to hydrated kaolin particles, and microbial degradation of these particles compared with equivalent doses of 13C:15N-labelled free amino acids. Experiments were conducted in 120 ml mesocosms over 7 days using biofilms and streamwater sampled from the Oberer Seebach stream (Austria), tracing assimilation and mineralization of 13C and 15N labels from mineral-sorbed and dissolved amino acids.Here we present data on the effects of organo-mineral sorption upon amino acid mineralization and its C:N stoichiometry. Organo-mineral sorption had a significant effect upon microbial activity, restricting C and N mineralization by both the biofilm and streamwater treatments. Distinct differences in community response were observed, with both dissolved and mineral-stabilized amino acids playing an enhanced role in the metabolism of the streamwater microbial community. Mineral-sorption of amino acids differentially affected C & N mineralization and reduced the C:N ratio of the dissolved amino acid pool. The present study demonstrates that organo-mineral complexes restrict microbial degradation of OM and may, consequently, alter the carbon and nitrogen cycling dynamics within aquatic ecosystems.
Resumo:
Over 1 million km2 of seafloor experience permanent low-oxygen conditions within oxygen minimum zones (OMZs). OMZs are predicted to grow as a consequence of climate change, potentially affecting oceanic biogeochemical cycles. The Arabian Sea OMZ impinges upon the western Indian continental margin at bathyal depths (150 - 1500 m) producing a strong depth dependent oxygen gradient at the sea floor. The influence of the OMZ upon the short term processing of organic matter by sediment ecosystems was investigated using in situ stable isotope pulse chase experiments. These deployed doses of 13C:15N labeled organic matter onto the sediment surface at four stations from across the OMZ (water depth 540 - 1100 m; [O2] = 0.35 - 15 μM). In order to prevent experimentally anoxia, the mesocosms were not sealed. 13C and 15N labels were traced into sediment, bacteria, fauna and 13C into sediment porewater DIC and DOC. However, the DIC and DOC flux to the water column could not be measured, limiting our capacity to obtain mass-balance for C in each experimental mesocosm. Linear Inverse Modeling (LIM) provides a method to obtain a mass-balanced model of carbon flow that integrates stable-isotope tracer data with community biomass and biogeochemical flux data from a range of sources. Here we present an adaptation of the LIM methodology used to investigate how ecosystem structure influenced carbon flow across the Indian margin OMZ. We demonstrate how oxygen conditions affect food-web complexity, affecting the linkages between the bacteria, foraminifera and metazoan fauna, and their contributions to benthic respiration. The food-web models demonstrate how changes in ecosystem complexity are associated with oxygen availability across the OMZ and allow us to obtain a complete carbon budget for the stationa where stable-isotope labelling experiments were conducted.
Resumo:
Inland waters are of global biogeochemical importance. They receive carbon inputs of ~ 4.8 Pg C/ y of which, 12 % is buried, 18 % transported to the oceans, and 70 % supports aquatic secondary production. However, the mechanisms that determine the fate of organic matter (OM) in these systems are poorly defined. One aspect of this is the formation of organo-mineral complexes in aquatic systems and their potential as a route for OM transport and burial vs. their use as carbon (C) and nitrogen (N) sources within aquatic systems. Organo-mineral particles form by sorption of dissolved OM to freshly eroded mineral surfaces and may contribute to ecosystem-scale particulate OM fluxes. We experimentally tested the availability of mineral-sorbed OM as a C & N source for streamwater microbial assemblages and streambed biofilms. Organo-mineral particles were constructed in vitro by sorption of 13C:15N-labelled amino acids to hydrated kaolin particles, and microbial degradation of these particles compared with equivalent doses of 13C:15N-labelled free amino acids. Experiments were conducted in 120 ml mesocosms over 7 days using biofilms and water sampled from the Oberer Seebach stream (Austria). Each incubation experienced a 16:8 light:dark regime, with metabolism monitored via changes in oxygen concentrations between photoperiods. The relative fate of the organo-mineral particles was quantified by tracing the mineralization of the 13C and 15N labels and their incorporation into microbial biomass. Here we present the initial results of 13C-label mineralization, incorporation and retention within dissolved organic carbon pool. The results indicate that 514 (± 219) μmol/ mmol of the 13:15N labeled free amino acids were mineralized over the 7-day incubations. By contrast, 186 (± 97) μmol/ mmol of the mineral-sorbed amino acids were mineralized over a similar period. Thus, organo-mineral complexation reduced amino acid mineralization by ~ 60 %, with no differences observed between the streamwater and biofilm assemblages. Throughout the incubations, biofilms were observed to leach dissolved organic carbon (DOC). However, within the streamwater assemblage the presence of both organo-mineral particles and kaolin particles was associated with significant DOC removal (-1.7 % and -7.5 % respectively). Consequently, the study demonstrates that mineral and organo-mineral particles can limit the availability of DOC in aquatic systems, providing nucleation sites for flocculation and fresh mineral surfaces, which facilitate OM-sorption. The formation of these organo-mineral particles subsequently restricts microbial OM degradation, potentially altering the transport and facilitating the burial of OM within streams.
Resumo:
Many natural cyclic peptides have potent and potentially useful biological activities. Their use as therapeutic starting points is often limited by the quantities available, the lack of known biological targets and the practical limits on diversification to fine-tune their properties. We report the use of enzymes from the cyanobactin family to heterocyclise and macrocyclise chemically synthesised substrates so as to allow larger-scale syntheses and better control over derivatisation. We have made cyclic peptides containing orthogonal reactive groups, azide or dehydroalanine, that allow chemical diversification, including the use of fluorescent labels that can help in target identification. We show that the enzymes are compatible and efficient with such unnatural substrates. The combination of chemical synthesis and enzymatic transformation could help renew interest in investigating natural cyclic peptides with biological activity, as well as their unnatural analogues, as therapeutics.
Resumo:
Generative algorithms for random graphs have yielded insights into the structure and evolution of real-world networks. Most networks exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Usually, random graph models consider only structural information, but many real-world networks also have labelled vertices and weighted edges. In this paper, we present a generative model for random graphs with discrete vertex labels and numeric edge weights. The weights are represented as a set of Beta Mixture Models (BMMs) with an arbitrary number of mixtures, which are learned from real-world networks. We propose a Bayesian Variational Inference (VI) approach, which yields an accurate estimation while keeping computation times tractable. We compare our approach to state-of-the-art random labelled graph generators and an earlier approach based on Gaussian Mixture Models (GMMs). Our results allow us to draw conclusions about the contribution of vertex labels and edge weights to graph structure.
Resumo:
We have designed software that can â€â€™look’’ at recorded ultrasound sequences. We analyzed fifteen video sequences representing recorded ultrasound scans of nine fetuses. Our method requires a small amount of user labelled pixels for processing the first frame. These initialize GrowCut 1 , a background removal algorithm, which was used for separating the fetus from its surrounding environment (segmentation). For each subsequent frame, user input is no longer necessary as some of the pixels will inherit labels from the previously processed frame. This results in our software’s ability to track movement. Two sonographers rated the results of our computer’s â€vision’ on a scale from 1 (poor fit) to 10 (excellent fit). They assessed tracking accuracy for the entire video as well as segmentation accuracy (the ability to identify fetus from non-fetus) for every 100th processed frame. There was no appreciable deterioration in the software’s ability to track the fetus over time. I
Resumo:
Increasing consumer demand for seafood, combined with concern over the health of our oceans, has led to many initiatives aimed at tackling destructive fishing practices and promoting the sustainability of fisheries. An important global threat to sustainable fisheries is Illegal, Unreported and Unregulated (IUU) fishing, and there is now an increased emphasis on the use of trade measures to prevent IUU-sourced fish and fish products from entering the international market. Initiatives encompass new legislation in the European Union requiring the inclusion of species names on catch labels throughout the distribution chain. Such certification measures do not, however, guarantee accuracy of species designation. Using two DNA-based methods to compare species descriptions with molecular ID, we examined 386 samples of white fish, or products labelled as primarily containing white fish, from major UK supermarket chains. Species specific real-time PCR probes were used for cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) to provide a highly sensitive and species-specific test for the major species of white fish sold in the UK. Additionally, fish-specific primers were used to sequence the forensically validated barcoding gene, mitochondrial cytochrome oxidase I (COI). Overall levels of congruence between product label and genetic species identification were high, with 94.34% of samples correctly labelled, though a significant proportion in terms of potential volume, were mislabelled. Substitution was usually for a cheaper alternative and, in one case, extended to a tropical species. To our knowledge, this is the first published study encompassing a large-scale assessment of UK retailers, and if representative, indicates a potentially significant incidence of incorrect product designation.
Resumo:
Illegal, Unreported and Unregulated fishing has had a major role in the overexploitation of global fish populations. In response, international regulations have been imposed and many fisheries have been 'eco-certified' by consumer organizations, but methods for independent control of catch certificates and eco-labels are urgently needed. Here we show that, by using gene-associated single nucleotide polymorphisms, individual marine fish can be assigned back to population of origin with unprecedented high levels of precision. By applying high differentiation single nucleotide polymorphism assays, in four commercial marine fish, on a pan-European scale, we find 93-100% of individuals could be correctly assigned to origin in policy-driven case studies. We show how case-targeted single nucleotide polymorphism assays can be created and forensically validated, using a centrally maintained and publicly available database. Our results demonstrate how application of gene-associated markers will likely revolutionize origin assignment and become highly valuable tools for fighting illegal fishing and mislabelling worldwide.
Resumo:
Learning from visual representations is enhanced when learners appropriately integrate corresponding visual and verbal information. This study examined the effects of two methods of promoting integration, color coding and labeling, on learning about probabilistic reasoning from a table and text. Undergraduate students (N = 98) were randomly assigned to learn about probabilistic reasoning from one of 4 computer-based lessons generated from a 2 (color coding/no color coding) by 2 (labeling/no labeling) between-subjects design. Learners added the labels or color coding at their own pace by clicking buttons in a computer-based lesson. Participants' eye movements were recorded while viewing the lesson. Labeling was beneficial for learning, but color coding was not. In addition, labeling, but not color coding, increased attention to important information in the table and time with the lesson. Both labeling and color coding increased looks between the text and corresponding information in the table. The findings provide support for the multimedia principle, and they suggest that providing labeling enhances learning about probabilistic reasoning from text and tables