33 resultados para decline
Resumo:
BACKGROUND: It is now common for individuals to require dialysis following the failure of a kidney transplant. Management of complications and preparation for dialysis are suboptimal in this group. To aid planning, it is desirable to estimate the time to dialysis requirement. The rate of decline in the estimated glomerular filtration rate (eGFR) may be used to this end.
METHODS: This study compared the rate of eGFR decline prior to dialysis commencement between individuals with failing transplants and transplant-naïve patients. The rate of eGFR decline was also compared between transplant recipients with and without graft failure. eGFR was calculated using the four-variable MDRD equation with rate of decline calculated by least squares linear regression.
RESULTS: The annual rate of eGFR decline in incident dialysis patients with graft failure exceeded that of the transplant-naïve incident dialysis patients. In the transplant cohort, the mean annual rate of eGFR decline prior to graft failure was 7.3 ml/min/1.73 m(2) compared to 4.8 ml/min/1.73 m(2) in the transplant-naïve group (p < 0.001) and 0.35 ml/min/1.73 m(2) in recipients without graft failure (p < 0.001). Factors associated with eGFR decline were recipient age, decade of transplantation, HLA mismatch and histological evidence of chronic immunological injury.
CONCLUSIONS: Individuals with graft failure have a rapid decline in eGFR prior to dialysis commencement. To improve outcomes, dialysis planning and management of chronic kidney disease complications should be initiated earlier than in the transplant-naïve population.
Resumo:
We use a multiproxy palaeoecological dataset from Dead Island bog in Northern Ireland to examine the cause of the Sphagnum austinii (Sphagnum imbricatum) decline. The disappearance of this species from the peat record occurred just after the ‘AD 860’ tephra layer and is coeval with a rapid increase in bog surface wetness and increased mineral dust and charcoal abundance. Although it is difficult to identify one specific cause of the decline, the evidence for increased soil-derived dust is apparent and is supported by regional tephra-dated pollen diagrams that reveal extensive landscape changes due to agricultural intensification in early Medieval Ireland. As the decline of S. austinii occurred much later (~ AD 1860) in Fallahogy bog (~ 1.2 km away), we suggest that the decline of S. austinii at Dead Island was caused by a combination of fire and the deposition of soil-derived dust. We suggest that future studies should consider the use of multiple cores from each site to examine the within-site variability of the decline of S. austinii.