73 resultados para cloud computing datacenter performance QoS
Resumo:
With the availability of a wide range of cloud Virtual Machines (VMs) it is difficult to determine which VMs can maximise the performance of an application. Benchmarking is commonly used to this end for capturing the performance of VMs. Most cloud benchmarking techniques are typically heavyweight - time consuming processes which have to benchmark the entire VM in order to obtain accurate benchmark data. Such benchmarks cannot be used in real-time on the cloud and incur extra costs even before an application is deployed.
In this paper, we present lightweight cloud benchmarking techniques that execute quickly and can be used in near real-time on the cloud. The exploration of lightweight benchmarking techniques are facilitated by the development of DocLite - Docker Container-based Lightweight Benchmarking. DocLite is built on the Docker container technology which allows a user-defined portion (such as memory size and the number of CPU cores) of the VM to be benchmarked. DocLite operates in two modes, in the first mode, containers are used to benchmark a small portion of the VM to generate performance ranks. In the second mode, historic benchmark data is used along with the first mode as a hybrid to generate VM ranks. The generated ranks are evaluated against three scientific high-performance computing applications. The proposed techniques are up to 91 times faster than a heavyweight technique which benchmarks the entire VM. It is observed that the first mode can generate ranks with over 90% and 86% accuracy for sequential and parallel execution of an application. The hybrid mode improves the correlation slightly but the first mode is sufficient for benchmarking cloud VMs.
Resumo:
Existing benchmarking methods are time consuming processes as they typically benchmark the entire Virtual Machine (VM) in order to generate accurate performance data, making them less suitable for real-time analytics. The research in this paper is aimed to surmount the above challenge by presenting DocLite - Docker Container-based Lightweight benchmarking tool. DocLite explores lightweight cloud benchmarking methods for rapidly executing benchmarks in near real-time. DocLite is built on the Docker container technology, which allows a user-defined memory size and number of CPU cores of the VM to be benchmarked. The tool incorporates two benchmarking methods - the first referred to as the native method employs containers to benchmark a small portion of the VM and generate performance ranks, and the second uses historic benchmark data along with the native method as a hybrid to generate VM ranks. The proposed methods are evaluated on three use-cases and are observed to be up to 91 times faster than benchmarking the entire VM. In both methods, small containers provide the same quality of rankings as a large container. The native method generates ranks with over 90% and 86% accuracy for sequential and parallel execution of an application compared against benchmarking the whole VM. The hybrid method did not improve the quality of the rankings significantly.
Resumo:
Scheduling jobs with deadlines, each of which defines the latest time that a job must be completed, can be challenging on the cloud due to incurred costs and unpredictable performance. This problem is further complicated when there is not enough information to effectively schedule a job such that its deadline is satisfied, and the cost is minimised. In this paper, we present an approach to schedule jobs, whose performance are unknown before execution, with deadlines on the cloud. By performing a sampling phase to collect the necessary information about those jobs, our approach delivers the scheduling decision within 10% cost and 16% violation rate when compared to the ideal setting, which has complete knowledge about each of the jobs from the beginning. It is noted that our proposed algorithm outperforms existing approaches, which use a fixed amount of resources by reducing the violation cost by at least two times.
Resumo:
Closing feedback loops using an IEEE 802.11b ad hoc wireless communication network incurs many challenges sensitivity to varying channel conditions and lower physical transmission rates tend to limit the bandwidth of the communication channel. Given that the bandwidth usage and control performance are linked, a method of adapting the sampling interval based on an 'a priori', static sampling policy has been proposed and, more significantly, assuring stability in the mean square sense using discrete-time Markov jump linear system theory. Practical issues including current limitations of the 802.11 b protocol, the sampling policy and stability are highlighted. Simulation results on a cart-mounted inverted pendulum show that closed-loop stability can be improved using sample rate adaptation and that the control design criteria can be met in the presence of channel errors and severe channel contention.
Resumo:
This paper examines the relative efficiency of UK credit unions. Radial and non-radial measures of input cost efficiency plus associated scale efficiency measures are computed for a selection of input output specifications. Both measures highlighted that UK credit unions have considerable scope for efficiency gains. It was mooted that the documented high levels of inefficiency may be indicative of the fact that credit unions, based on clearly defined and non-overlapping common bonds, are not in competition with each other for market share. Credit unions were also highlighted as suffering from a considerable degree of scale inefficiency with the majority of scale inefficient credit unions subject to decreasing returns to scale. The latter aspect highlights that the UK Government's goal of larger credit unions must be accompanied by greater regulatory freedom if inefficiency is to be avoided. One of the advantages of computing non-radial measures is that an insight into potential over- or under-expenditure on specific inputs can be obtained through a comparison of the non-radial measure of efficiency with the associated radial measure. Two interesting findings emerged, the first that UK credit unions over-spend on dividend payments and the second that they under-spend on labour costs.
Resumo:
The performance of a new pointer-based medium-access control protocol that was designed to significantly improve the energy efficiency of user terminals in quality-of-service-enabled wireless local area networks was analysed. The new protocol, pointer-controlled slot allocation and resynchronisation protocol (PCSARe), is based on the hybrid coordination function-controlled channel access mode of the IEEE 802.11e standard. PCSARe reduces energy consumption by removing the need for power-saving stations to remain awake for channel listening. Discrete event network simulations were performed to compare the performance of PCSARe with the non-automatic power save delivery (APSD) and scheduled-APSD power-saving modes of IEEE 802.11e. The simulation results show a demonstrable improvement in energy efficiency without significant reduction in performance when using PCSARe. For a wireless network consisting of an access point and eight stations in power-saving mode, the energy saving was up to 39% when using PCSARe instead of IEEE 802.11e non-APSD. The results also show that PCSARe offers significantly reduced uplink access delay over IEEE 802.11e non-APSD, while modestly improving the uplink throughput. Furthermore, although both had the same energy consumption, PCSARe gave a 25% reduction in downlink access delay compared with IEEE 802.11e S-APSD.
Resumo:
A high-sample rate 3D median filtering processor architecture is proposed, based on a novel 3D median filtering algorithm, that can reduce the computing complexity in comparison with the traditional bubble sorting algorithm. A 3 x 3 x 3 filter processor is implemented in VHDL, and the simulation verifies that the processor can process a 128 x 128 x 96 MRI image in 0.03 seconds while running at 50 MHz.