34 resultados para chinook salmon
Resumo:
1. Freshwater unionoids are one of the most threatened animal groups worldwide and the freshwater pearl mussel Margaritifera margaritifera is currently listed as critically endangered in Europe. The ‘EC Habitats & Species Directive’ requires that EU member states monitor the distribution and abundance of this species and report regularly on its conservation status.
2. The pearl mussel meta-population in Northern Ireland was surveyed to assess temporal population trends in Special Areas of Conservation (SACs) and mussel reproduction throughout its range.
3. Mussels occurred in six rivers and numbers within three SAC designated sites remained stable between 2004-07 and 2011. The discovery of >8,000 previously unknown individuals in the Owenreagh River contributed to an overall increase (+56.8%) in the total known population. All populations actively reproduced during 2010 with approximately half of all individuals gravid. Moreover, suitable salmonid hosts occurred at all sites with 10.7% of salmon and 22.8% of trout carrying encysted glochidia. Populations were composed entirely of aged individuals with little evidence of recent recruitment.
4. We infer that the break in the life cycle must occur during the juvenile stage when glochidia metamorphose and settle into the interstitial spaces within the substrate. Water quality parameters, most notably levels of suspended solids, exceeded the recommended maximum thresholds in all rivers.
5. We posit that the deposition of silt may be the main cause of juvenile mortality contributing to a lack of recruitment. Consequently, all populations were judged to be in ‘unfavourable’ conservation status. Catchment-level management plans are urgently needed to reduce siltation with the aim of improving recruitment. Our results have implications for the success of ex-situ conservation programmes; specifically, the size at which captive bred juveniles are released into the wild. Further research is required to assess the vulnerabilities of early life stages of M. margaritifera to siltation.
Resumo:
Background: Resource utilisation and direct costs associated with glaucoma progression in Europe are unknown. As population progressively ages, the economic impact of the disease will increase. Methods: From a total of 1655 consecutive cases, the records of 194 patients were selected and stratified by disease severity. Record selection was based on diagnoses of primary open angle glaucoma, glaucoma suspect, ocular hypertension, or normal tension glaucoma; 5 years minimum follow up were required. Glaucoma severity was assessed using a six stage glaucoma staging system based on static threshold visual field parameters. Resource utilisation data were abstracted from the charts and unit costs were applied to estimate direct costs to the payer. Resource utilisation and estimated direct cost of treatment, per person year, were calculated. Results: A statistically significant increasing linear trend (p = 0.018) in direct cost as disease severity worsened was demonstrated. The direct cost of treatment increased by an estimated €86 for each incremental step ranging from €455 per person year for stage 0 to €969 per person year for stage 4 disease. Medication costs ranged from 42% to 56% of total direct cost for all stages of disease. Conclusions: These results demonstrate for the first time in Europe that resource utilisation and direct medical costs of glaucoma management increase with worsening disease severity. Based on these findings, managing glaucoma and effectively delaying disease progression would be expected to significantly reduce the economic burden of this disease. These data are relevant to general practitioners and healthcare administrators who have a direct influence on the distribution of resources.
Resumo:
Farming of salmon has become a significant industry in many countries over the past two decades. A major challenge facing this sector is infestation of the salmon by sea lice. The main way of treating salmon for such infestations is the use of medicines such as organophosphates, pyrethrins, hydrogen peroxide or benzoylphenyl ureas. The use of these medicines in fish farms is, however, highly regulated due to concerns about contamination of the wider marine environment. In this paper we report the use of photochemically active biocides for the treatment of a marine copepod, which is a model of parasitic sea lice. Photochemical activation and subsequent photodegradation of PDAs may represent a controllable and environmentally benign option for control of these parasites or other pest organisms in aquaculture.
Resumo:
Repeated recolonization of freshwater environments following Pleistocene glaciations has played a major role in the evolution and adaptation of anadromous taxa. Located at the western fringe of Europe, Ireland and Britain were likely recolonized rapidly by anadromous fishes from the North Atlantic following the last glacial maximum (LGM). While the presence of unique mitochondrial haplotypes in Ireland suggests that a cryptic northern refugium may have played a role in recolonization, no explicit test of this hypothesis has been conducted. The three-spined stickleback is native and ubiquitous to aquatic ecosystems throughout Ireland, making it an excellent model species with which to examine the biogeographical history of anadromous fishes in the region. We used mitochondrial and microsatellite markers to examine the presence of divergent evolutionary lineages and to assess broad-scale patterns of geographical clustering among postglacially isolated populations. Our results confirm that Ireland is a region of secondary contact for divergent mitochondrial lineages and that endemic haplotypes occur in populations in Central and Southern Ireland. To test whether a putative Irish lineage arose from a cryptic Irish refugium, we used approximate Bayesian computation (ABC). However, we found no support for this hypothesis. Instead, the Irish lineage likely diverged from the European lineage as a result of postglacial isolation of freshwater populations by rising sea levels. These findings emphasize the need to rigorously test biogeographical hypothesis and contribute further evidence that postglacial processes may have shaped genetic diversity in temperate fauna.