252 resultados para character release
Resumo:
Weathering studies have often sought to explain features in terms of a prevailing set of environmental conditions. However, it is clear that in most present-day hot desert regions, the surface rock debris has been exposed to a range of weathering environments and processes. These different weathering conditions can arise in two ways, either from the effects of long-term climate change acting on debris that remains relatively static within the landscape or through the spatial relocation of debris from high to low altitude. Consequently, each fragment of rock may contain a unique weathering-related legacy of damage and alteration — a legacy that may greatly influence its response to present-day weathering activity. Experiments are described in which blocks of limestone, sandstone, granite and basalt are given ‘stress histories’ by subjecting them to varying numbers of heating and freezing cycles as a form of pre-treatment. These imposed stress histories act as proxies for a weathering history. Some blocks were used in a laboratory salt weathering simulation study while others underwent a 2 year field exposure trial at high, mid and low altitude sites in Death Valley, California. Weight loss and ultrasonic pulse velocity measurements suggest that blocks with stress histories deteriorate more rapidly than unstressed samples of the same rock type exposed to the same environmental conditions. Laboratory data also indicate that the result of imposing a known ‘weathering history’ on samples by pre-stressing them is an increase in the amount of fine sediment released during salt weathering over a given period of time in comparison to unstressed samples.
Resumo:
Abstract To achieve higher flexibility and to better satisfy actual customer requirements, there is an increasing tendency to develop and deliver software in an incremental fashion. In adopting this process, requirements are delivered in releases and so a decision has to be made on which requirements should be delivered in which release. Three main considerations that need to be taken account of are the technical precedences inherent in the requirements, the typically conflicting priorities as determined by the representative stakeholders, as well as the balance between required and available effort. The technical precedence constraints relate to situations where one requirement cannot be implemented until another is completed or where one requirement is implemented in the same increment as another one. Stakeholder preferences may be based on the perceived value or urgency of delivered requirements to the different stakeholders involved. The technical priorities and individual stakeholder priorities may be in conflict and difficult to reconcile. This paper provides (i) a method for optimally allocating requirements to increments; (ii) a means of assessing and optimizing the degree to which the ordering conflicts with stakeholder priorities within technical precedence constraints; (iii) a means of balancing required and available resources for all increments; and (iv) an overall method called EVOLVE aimed at the continuous planning of incremental software development. The optimization method used is iterative and essentially based on a genetic algorithm. A set of the most promising candidate solutions is generated to support the final decision. The paper evaluates the proposed approach using a sample project.
Resumo:
To give the first demonstration of neighboring group-controlled drug delivery rates, a series of novel, polymerizable ester drug conjugates was synthesized and fully characterized. The monomers are suitable for copolymerization in biomaterials where control of drug release rate is critical to prophylaxis or obviation of infection. The incorporation of neighboring group moieties differing in nucleophilicity, geometry, and steric bulk in the conjugates allowed the rate of ester hydrolysis, and hence drug liberation, to be rationally and widely controlled. Solutions (2.5 x 10-5 mol dm-3) of ester conjugates of nalidixic acid incorporating pyridyl, amino, and phenyl neighboring groups hydrolyzed according to first-order kinetics, with rate constants between 3.00 ( 0.12 10-5 s -1 (fastest) and 4.50 ( 0.31 10- 6 s-1 (slowest). The hydrolysis was characterized using UV-visible spectroscopy. When copolymerized with poly(methyl methacrylate), free drug was shown to elute from the resulting materials, with the rate of release being controlled by the nature of the conjugate, as in solution. The controlled molecular architecture demonstrated by this system offers an attractive class of drug conjugate for the delivery of drugs from polymeric biomaterials such as bone cements in terms of both sustained, prolonged drug release and minimization of mechanical compromise as a result of release. We consider these results to be the rationale for the development of 'designer' drug release biomaterials, where the rate of required release can be controlled by predetermined molecular architecture.