40 resultados para carbon nanotube
Resumo:
Multi-walled carbon nanotube (MWCNT)/polymethyl methacrylate (PMMA) composites with loadings ranging from 0.1 to 1.0 wt.% were prepared for use as bone cement. Unfunctionalised, carboxyl and amine functionalised MWCNT were used. Thermal properties were characterised in accordance with the International Standard for acrylic cements, ISO 5833:2002. The rate of reaction exotherm generated and thermal necrosis index (TNI) values were calculated. Polymerisation kinetics were characterised using parallel plate rheology and the exotherm during polymerisation was reduced by ˜4–34%, as a consequence of the MWCNT thermal conductivity. The rate of reaction was significantly altered, such that the setting times of the cements were extended (˜3–24%). Consequently, significant decreases in TNI values (ranging from 3% to 99%) were recorded, which could reduce the exothermic temperatures experienced in vivo and therefore prevent the likelihood of polymerising PMMA cement causing thermally-induced bone tissue necrosis. Thermal data was supported by the rheological characterisation results. Onset of polymerisation for PMMA cement exhibited a strong linear increase as a function of MWCNT loading, however, polymer gelation was not affected to the same degree. It is proposed that the chemically functionalised MWCNT altered PMMA bone cement polymerisation kinetics, reducing the rate of polymerisation, and hence, the reaction exotherm.
Resumo:
We report a simple and facile methodology for constructing Pt (6.3 mm x 50 mu m) and Cu (6.3 mm x 30 mu m) annular microband electrodes for use in room temperature ionic liquids (RTILs) and propose their use for amperometric gas sensing. The suitability of microband electrodes for use in electrochemical analysis was examined in experiments on two systems. The first system studied to validate the electrochemical responses of the annular microband electrode was decamethylferrocene (DmFc), as a stable internal reference probe commonly used in ionic liquids, in [Pmim][NTf2], where the diffusion coefficients of DmFc and DmFc(+) and the standard electron rate constant for the DmFc/DmFc(+) couple were determined through fitting chronoamperometric and cyclic voltammetric responses with relevant simulations. These values are independently compared with those collected from a commercially available Pt microdisc electrode with excellent agreement. The second system focuses on O-2 reduction in [Pmim][NTf2], which is used as a model for gas sensing. The diffusion coefficients of O-2 and O-2(-) and the electron transfer rate constant were again obtained using chronoamperometry and cyclic voltammetry, along with simulations. Results determined from the microbands are again consistent to those evaluated from the Pt microdisc electrode when compared these results from home-made microband and commercially available microdisc electrodes. These observations indicate that the fabricated annular microband electrodes are suitable for quantitative measurements. Further the successful use of the Cu electrodes in the O-2 system suggests a cheap disposable sensor for gas detection. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The cell-specific delivery of polynucleic acids (e.g., DNA, RNA), gene therapy, has the potential to treat various diseases. In this chapter we discuss the use of organic electronic materials as non-viral gene delivery vectors and the great potential for electrochemically triggered gene delivery. We highlight some examples in this chapter based on fullerenes (bucky balls and carbon nanotubes), graphenes and electroactive polymers, particularly those that include experiments in vivo.
Resumo:
The incorporation of carboxyl functionalised multi-walled carbon nanotube (MWCNT-COOH) into a leading proprietary grade orthopaedic bone cement (Simplex PTM) at 0.1 wt% has been investigated. Resultant static and fatigue mechanical properties, in addition to thermal and polymerisation properties, have been determined. Significant improvements (p 0.001) in bending strength (42%), bending modulus (55%) and fracture toughness (22%) were demonstrated. Fatigue properties were improved (p 0.001), with mean number of cycles to failure and fatigue performance index being increased by 64% and 52%, respectively. Thermal necrosis index values at 44C and 55C were significantly reduced (p 0.001) (28% and 27%) versus the control. Furthermore, the onset of polymerisation increased by 58% (p < 0.001), as did the duration of the polymerisation reaction (52%). Peak energy during polymerisation increased by 672% (p < 0.001). Peak area of polymerisation increased by 116% (p < 0.001) indicating that the incorporation of MWCNT-COOH reduced the rate of polymerisation significantly. A non-significant reduction (8%) in percentage monomer conversion was also recorded. Raman spectroscopy clearly showed that the addition of MWCNT-COOH increased the ratio between normalised intensities of the G-Band and D-Band (IG/ID), and also increased the theoretical compressive strain (1.72%) exerted on the MWCNT-COOH by the Simplex PTM cement matrix. Therefore, demonstrating a level of chemical interactivity between the MWCNT-COOH and the Simplex PTM bone cement exists and consequently a more effective mechanism for successful transfer of mechanical load. The extent of homogenous dispersion of the MWCNT-COOH throughout the bone cement was determined using Raman mapping. Ke
Resumo:
Biaxial stretching of melt mixed high density polyethylene (HDPE)/multiwalled carbon nanotube (MWCNT) nanocomposites was conducted in the melt state at different stretching ratios (SRs). The addition of MWCNTs leads to significant strain hardening in the HDPE, greatly improving the stability and thus processability of the stretching process. Scanning electron microscopy shows that the MWCNTs in the polymer matrix are gradually disentangled and randomly oriented in the stretching plane with increasing SRs. All the stretched samples exhibit an increase in crystallinity (about 10%) due to strain induced crystallization and a broadened distribution of crystallite size according to the XRD and DSC results. The mechanical properties of the composites improve with increasing SRs, while they drop off after a SR of 2.5 for the neat HDPE which is likely to be due to the relaxation of polymer chains prior to solidification. The presence of the MWCNTs appears to inhibit this relaxation thus helping to maintain the orientation and mechanical properties at high SRs. The modulus, yield strength and breaking strength of stretched composites with 8 wt% MWCNTs increase by approximately 54%, 85% and 193% respectively compared with the neat HDPE at a SR of 3. The electrical percolation threshold for the unstretched material occurs at 1.9 wt% MWCNTs. As SR increases, the values of critical concentration increase from 1.9 wt% to 4.9 wt% implying the destruction of conductive networks due to an increased inter-particle distance. A loading of 6 wt% MWCNTs is sufficient to ensure that the sheet conductivity is robust to changes in the SR. Decreased values of critical exponent from 1.9 to 1.1 and morphological investigation reveal a transformation of the system structure from three dimensional to two dimensional as SR increases.
Resumo:
High density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) composites containing 4 wt% MWCNTs were prepared by melt mixing followed by compression moulding into sheet. Compression moulded sheets were heated to just below the melting temperature and biaxially stretched at ratios (SRs) of 2, 2.5 and 3.0. The effect of stretching on the thermal and mechanical properties of the sheet was studied by differential scanning calorimetry (DSC) and tensile testing. DSC results show that the crystallinity of all the stretched samples increases by approximately 13% due to strain induced crystallization. The melting temperature of the biaxially stretched samples increases only slightly while crystallization temperature is not affected. Tensile test results indicate that at a SR of 2.5 the elastic modulus of the stretched composites increases by 17.6% relative to the virgin HDPE, but the breaking strength decreases by 33%. While the elastic modulus and breaking strength of the HDPE/MWCNT samples continue to increase as SR increases they drop off after a SR of 2.5 for the virgin HDPE. This is probably due to the constraining influence of the nanotubes preventing the relaxation of polymer chains caused by adiabatic heating at high SRs. The addition of MWCNTs results in significant strain hardening during deformation. While this will lead to increased energy requirement in forming it will also result in a more stable process and the ability to produce deep draw containers with more uniform wall thickness
Resumo:
One-dimensional monatomic chains are promising candidates for technical applications in the field of nanoelectronics due to their unique mechanical, electrical and optical properties. In particular, we investigate the mechanical properties including Young's modulus, ultimate strength and ultimate strain, which are necessities for the stability of the materials by the Car-Parrinello molecular dynamics in this work. The comparative studies for the alternating carbon-nitrogen (C3N2) chain and carbon chains (carbyne) of different lengths show that the carbon-nitrogen (C-N) chain is obviously stronger and stiffer than carbynes. Thus the C-N chain, which has been found in decomposition products of the nitromethane explosive simulations, could be a superior nano-mechanical material than the carbyne chain. Furthermore, it is found that the bond order of weakest bond in monatomic chains is positively correlated with Young's modulus and ultimate strength of materials.
Resumo:
An analysis on the conductance of multiwall carbon nanotubes (MWNT's) is presented. Recent experiment indicated that MWNT's are good quantum conductors. Our theory shows that tunneling current between states on different walls of a defect-free, infinitely long MWNT is vanishingly small in general, which leads to the quantization of the conductance of the MWNT's. With a reasonable simple model, we explicitly show that the conductance of a capped MWNT can be determined by the outermost wall for an infinitely long nanotube. We apply the theory to finite MWNT's and estimate the generic interwall conductance to be negligible compared to the intrawall ballistic conductance.
Resumo:
The effects of addition of reinforcing carbon nanotubes (CNTs) into hydrogenated nitrile-butadiene rubber (HNBR) matrix on the mechanical, dynamic viscoelastic, and permeability properties were studied in this investigation. Different techniques of incorporating nanotubes in HNBR were investigated in this research. The techniques considered were more suitable for industrial preparation of rubber composites. The nanotubes were modified with different surfactants and dispersion agents to improve the compatibility and adhesion of nanotubes on the HNBR matrix. The effects of the surface modification of the nanotubes on various properties were examined in detail. The amount of CNTs was varied from 2.5 to 10 phr in different formulations prepared to identify the optimum CNT levels. A detailed analysis was made to investigate the morphological structure and mechanical behavior at room temperature. The viscoelastic behavior of the nanotube filler elastomer was studied by dynamic mechanical thermal analysis (DMTA). Morphological analysis indicated a very good dispersion of the CNTs for a low nanotube loading of 3.5 phr. A significant improvement in the mechanical properties was observed with the addition of nanotubes. DMTA studies revealed an increase in the storage modulus and a reduction in the glass-transition temperature after the incorporation of the nanotubes. Further, the HNBR/CNT nanocomposites were subjected to permeability studies. The studies showed a significant reduction in the permeability of nitrogen gas. Copyright © 2011 Wiley Periodicals, Inc.