40 resultados para carbon composites


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composites of multi-walled carbon nanotubes (MWCNT) of varied functionality (unfunctionalised and carboxyl and amine functionalised) with polymethyl methacrylate (PMMA) were prepared for use as a bone cement. The MWCNT loadings ranged from 0.1 to 1.0 wt.%. The fatigue properties of these MWCNT–PMMA bone cements were characterised at MWCNT loading levels of 0.1 and 0.25 wt.% with the type and wt.% loading of MWCNT used having a strong influence on the number of cycles to failure. The morphology and degree of dispersion of the MWCNT in the PMMA matrix at different length scales were examined using field emission scanning electron microscopy. Improvements in the fatigue properties were attributed to the MWCNT arresting/retarding crack propagation through the cement through a bridging effect and hindering crack propagation. MWCNT agglomerates were evident within the cement microstructure and the degree of agglomeration was dependent on the level of loading and functionality of the MWCNT. The biocompatibility of the MWCNT–PMMA cements at MWCNT loading levels upto 1.0 wt.% was determined by means of established biological cell culture assays using MG-63 cells. Cell attachment after 4 h was determined using the crystal violet staining assay. Cell viability was determined over 7 days in vitro using the standard colorimetric MTT assay. Confocal scanning laser microscopy and SEM analysis was also used to assess cell morphology on the various substrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of addition of reinforcing carbon nanotubes (CNTs) into hydrogenated nitrile-butadiene rubber (HNBR) matrix on the mechanical, dynamic viscoelastic, and permeability properties were studied in this investigation. Different techniques of incorporating nanotubes in HNBR were investigated in this research. The techniques considered were more suitable for industrial preparation of rubber composites. The nanotubes were modified with different surfactants and dispersion agents to improve the compatibility and adhesion of nanotubes on the HNBR matrix. The effects of the surface modification of the nanotubes on various properties were examined in detail. The amount of CNTs was varied from 2.5 to 10 phr in different formulations prepared to identify the optimum CNT levels. A detailed analysis was made to investigate the morphological structure and mechanical behavior at room temperature. The viscoelastic behavior of the nanotube filler elastomer was studied by dynamic mechanical thermal analysis (DMTA). Morphological analysis indicated a very good dispersion of the CNTs for a low nanotube loading of 3.5 phr. A significant improvement in the mechanical properties was observed with the addition of nanotubes. DMTA studies revealed an increase in the storage modulus and a reduction in the glass-transition temperature after the incorporation of the nanotubes. Further, the HNBR/CNT nanocomposites were subjected to permeability studies. The studies showed a significant reduction in the permeability of nitrogen gas. Copyright © 2011 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A carbon nanotube free-standing linearly dichroic polariser is developed using solid-state extrusion. Membrane cohesion is experimentally and numerically demonstrated to derive from inter-tube van der Waals interactions in this family of planar metastable morphologies, controlled by the chemical vapour deposition conditions. Ultra-broadband polarisation (400 nm – 2.5 mm) is shown and corroborated by effective medium and full numerical simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two mechanisms of conduction were identified from temperature dependent (120 K-340 K) DC electrical resistivity measurements of composites of poly(c-caprolactone) (PCL) and multi-walled carbon nanotubes (MWCNTs). Activation of variable range hopping (VRH) occurred at lower temperatures than that for temperature fluctuation induced tunneling (TFIT). Experimental data was in good agreement with the VRH model in contrast to the TFIT model, where broadening of tunnel junctions and increasing electrical resistivity at T > T-g is a consequence of a large difference in the coefficients of thermal expansion of PCL and MWCNTs. A numerical model was developed to explain this behavior accounting for a thermal expansion effect by supposing the large increase in electrical resistivity corresponds to the larger relative deformation due to thermal expansion associated with disintegration of the conductive MWCNT network. MWCNTs had a significant nucleating effect on PCL resulting in increased PCL crystallinity and an electrically insulating layer between MWCNTs. The onset of rheological percolation at similar to 0.18 vol% MWCNTs was clearly evident as storage modulus, G' and complex viscosity, vertical bar eta*vertical bar increased by several orders of magnitude. From Cole-Cole and Van Gurp-Palmen plots, and extraction of crossover points (G(c)) from overlaying plots of G' and G '' as a function of frequency, the onset of rheological percolation at 0.18 vol% MWCNTs was confirmed, a similar MWCNT loading to that determined for electrical percolation. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preliminary evaluation is described of a new electro-thermal anti-icing/de-icing device for carbon fibre composite aerostructures. The heating element is an electro-conductive carbon-based textile (ECT) by Gorix. Electrical shorting between the structural carbon fibres and the ECT was mitigated by incorporating an insulating layer formed of glass fibre plies or a polymer film. A laboratory-based anti-icing and de-icing test program demonstrated that the film-insulated devices yielded better performance than the glssass fibre insulated ones. The heating capability after impact damage was maintained as long as the ECT fabric was not breached to the extent of causing electrical shorting. A modified structural scarf repair was shown to restore the heating capacity of a damaged specimen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many timber structures may require strengthening due to either decay and aging or an increase of load. This paper presents an experimental study in which eleven timber beams were tested, including three unstrengthened reference beams and eight beams strengthened with NSM CFRP bars. The test parameters include the position of NSM (tensile face or the bottom of the sides), the number of CFRP bars (1 or 2), and additional anchorage of NSM CFRP bars (steel wire U anchors or CFRP U strips). The test results show that the ultimate flexural strength of the timber beams were increased by 14%∼85% with an average of 47% due to NSM CFRP bar strengthening. Their deflection corresponding to the peak load was increased by 33% in average.