83 resultados para bladder irrigation
Resumo:
PURPOSE: Animal models are important for pre-clinical assessment of novel therapies in metastatic bladder cancer. The F344/AY-27 model involves orthotopic colonisation with AY-27 tumour cells which are syngeneic to F344 rats. One disadvantage of the model is the unknown status of colonisation between instillation and sacrifice. Non-invasive optical imaging using red fluorescence reporters could potentially detect tumours in situ and would also reduce the number of animals required for each experiment.
MATERIALS AND METHODS: AY-27 cells were stably transfected with either pDsRed2-N1 or pcDNA3.1tdTomato. The intensity and stability of fluorescence in the resultant AY-27/DsRed2-N1 and AY-27/tdTomato stable cell lines were compared using Xenogen IVIS®200 and Olympus IX51 systems.
RESULTS: AY-27/tdTomato fluorescence intensity was 60-fold brighter than AY-27/DsRed2-N1 and was sustained in AY-27/tdTomato cells following freezing and six subsequent sub-cultures. After sub-cutaneous injection, fluorescence intensity from AY-27/tdTomato cells was threefold stronger than that detected from AY-27/DsRed2-N1 cells. IVIS®200 detected fluorescence from AY-27/tdTomato and AY-27/DsRed2-N1 cells colonising resected and exteriorised bladders, respectively. However, the deep-seated position of the bladder precluded in vivo imaging. Characteristics of AY-27/tdTomato cells in vitro and in tumours colonising F344 rats resembled those of parental AY-27 cells. Tumour transformation was observed in the bladders colonised with AY-27/DsRed2-N1 cells.
CONCLUSIONS: In vivo whole-body imaging of internal red fluorescent animal tumours should use pcDNA3.1tdTomato rather than pDsRed2-N1. Optical imaging of deep-seated organs in larger animals remains a challenge which may require proteins with brighter red or far-red fluorescence and/or alternative approaches.
Resumo:
Aims: To investigate the ability of ischaemic preconditioning (IPC) to protect guinea-pig detrusor from damage caused by a subsequent more prolonged exposure to ischaemic conditions.
Materials and Methods: Smooth muscle strips were mounted for tension recording in small organ baths continuously superfused with Krebs' solution at 37 degrees C. Ischaemia was mimicked by removing oxygen and glucose from the superfusing solution. Contractile responses to electrical field stimulation (EFS) and carbachol were monitored. Three regimes of preconditioning were examined: 15, 10, and 5 min of ischaemic conditions followed by 15, 10, and 5 min of normal conditions, respectively.
Results: Without preconditioning, nerve-mediated responses were significantly and proportionally reduced by periods of ischaemic conditions lasting for 45, 60, and 90 min, but recovered fully after exposure to ischaemic conditions for 30 min. The recovery of the responses to EFS was significantly improved in preconditioned strips when the period of ischaemic conditions was 45 or 60 min. However, no significant differences were seen with preconditioning when the period of ischaemic conditions was 90 min. The recovery of responses to carbachol was much greater than for the responses to EFS, and no significant differences were found between control and preconditioned strips.
Conclusions: It is suggested that in vivo short periods of transient ischaemia may be able to protect the guinea-pig bladder from the impairment associated with longer periods of ischaemia and reperfusion, which might happen in obstructed micturition. Our results also indicate that the phenomenon affects mainly the intrinsic nerves, which are more susceptible to ischaemic damage than the smooth muscle.
Resumo:
Consistency in target organ and organ at risk position from planning to treatment is an important basic principle of radiotherapy. This study evaluates the effectiveness of bladder-filling instructions in achieving a consistent and reproducible bladder volume at the time of planning CT and daily during the course of radical radiotherapy for prostate cancer. It also assessed the rate of bladder filling before and at the end of radiotherapy.
Resumo:
We characterized Fas immunoreactivity, functionality and its role in the response to mitomycin-C (MMC) chemotherapy in vitro in cell lines and in vivo in bladder washings from 23 transitional cell carcinoma of the bladder (TCCB) patients, harvested prior to and during MMC intravesical treatment. Having established the importance of functional Fas, we investigated the methylation and exon 9 mutation as mechanisms of Fas silencing in TCCB. For the first time, we report p53 up-regulation in 9/14 and Fas up-regulation in 7/9 TCCB patients during intravesical MMC treatment. Fas immunoreactivity was strong in the TCCB cell line T24 and in 17/20 (85%) tumor samples from patients with advanced TCCB. T24 and HT1376 cells were resistant to MMC and recombinant Fas ligand, whilst RT4 cells were responsive to Fas ligand and MMC. Using RT4 cells as a model, siRNA targeting p53 significantly reduced MMC-induced p53 and Fas up-regulation and stable DN-FADD transfection decreased MMC-induced apoptosis, suggesting that functional Fas enhances chemotherapy responses in a p53-dependent manner. In HT1376 cells, 5-aza-2-deoxycytidine (12 µM) induced Fas immunoreactivity and reversed methylation at CpG site -548 within the Fas promoter. This site was methylated in 13/24 (54%) TCCB patient samples assessed using Methylation-Specific Polymerase Chain Reaction. There was no methylation at either the p53 enhancer region within the first intron or at the SP-1 binding region in the promoter and no mutation within exon 9 in tumor DNA extracted from 38 patients. Methylation at CpG site -548 is a potential target for demethylating drugs.
Resumo:
BACKGROUND: We appraised 23 biomarkers previously associated with urothelial cancer in a case-control study. Our aim was to determine whether single biomarkers and/or multivariate algorithms significantly improved on the predictive power of an algorithm based on demographics for prediction of urothelial cancer in patients presenting with hematuria. METHODS: Twenty-two biomarkers in urine and carcinoembryonic antigen (CEA) in serum were evaluated using enzyme-linked immunosorbent assays (ELISAs) and biochip array technology in 2 patient cohorts: 80 patients with urothelial cancer, and 77 controls with confounding pathologies. We used Forward Wald binary logistic regression analyses to create algorithms based on demographic variables designated prior predicted probability (PPP) and multivariate algorithms, which included PPP as a single variable. Areas under the curve (AUC) were determined after receiver-operator characteristic (ROC) analysis for single biomarkers and algorithms. RESULTS: After univariate analysis, 9 biomarkers were differentially expressed (t test; P
Resumo:
Introduction Changes in the distribution of interstitial cells (IC) are reportedly associated with dysfunctional bladder. The present study investigated whether spinal cord injury (SCI) resulted in changes to IC subpopulations (vimentin-positive with the ultrastructural profile of IC), smooth muscle and nerves within the bladder wall and correlated cellular remodelling with functional properties. Methods Bladders from SCI (T8/9 transection) and sham-operated rats five-weeks post-injury were used for ex vivo pressure-volume experiments or processed for morphological analysis with transmission electron microscopy (TEM) and light/confocal microscopy. Results Pressure-volume relationships revealed low-pressure, hypercompliance in SCI bladders indicative of decompensation. Extensive networks of vimentin-positive IC were typical in sham lamina propria and detrusor but were markedly reduced post-SCI; semi-quantitative analysis showed significant reduction. Nerves labelled with anti-neurofilament and anti-vAChT were notably decreased post-SCI. TEM revealed lamina propria IC and detrusor IC which formed close synaptic-like contacts with vesicle-containing nerve varicosities in shams. Lamina propria and detrusor IC were ultrastructurally damaged post-SCI with retracted/lost cell processes and were adjacent to areas of cellular debris and neuronal degradation. Smooth muscle hypertrophy was common to SCI tissues. Conclusions IC populations in bladder wall were decreased five weeks post-SCI, accompanied with reduced innervation, smooth muscle hypertrophy and increased compliance. These novel findings indicate that bladder wall remodelling post-SCI affects the integrity of interactions between smooth muscle, nerves and IC, with compromised IC populations. Correlation between IC reduction and a hypercompliant phenotype suggests that disruption to bladder IC contribute to pathophysiological processes underpinning the dysfunctional SCI bladder.
Resumo:
Purpose: We investigated the ultrastructural characteristics of interstitial cells of Cajal in the guinea pig bladder.
Resumo:
Purpose: To discuss the role of apoptosis, gene directed self-destruction of a cell, in the response of transitional cell carcinoma of the bladder cells to chemotherapy. Methods: A directed MEDLINE literature search of apoptosis, bladder cancer and chemotherapy was performed to extract the relevant information, which was reviewed. The characteristics of apoptotic cells were defined and the methods in common use to detect these traits were described. The role of the key mediators of the apoptotic process in bladder cancer is discussed in the context of chemosensitivity and stage of disease. The importance of induction of apoptosis post chemotherapy is highlighted. Results: On stimulus by appropriate external or internal signals, a cell may alter the expression of genes coding for proteins associated with the apoptotic process. The development of apoptosis depends on the balance between pro- and anti- apoptotic proteins. Key alterations in genes and proteins related to apoptosis within bladder cancer result in a shift away from an ability to undergo apoptosis towards a cell with increased survival properties that is chemoresistant. Conclusions: Much current research in bladder cancer is aimed at restoring chemosensitivity by shifting the balance in a cell towards a pro-apoptotic phenotype. Successful translation of this work into clinical practice may improve survival in patients in whom prognosis is currently poor.
Resumo:
There were three objectives to the present study: (1) compare the bladder infection rate and extent of biofilm formation for seven untreated spinal cord injured (SCI) patients and seven given prophylactic co-trimoxazole, (2) identify a level of bacterial adhesion to bladder cells which could be used to help predict symptomatic infection, and (3) determine from in vivo and in vitro studies whether fluoroquinolones were effective at penetrating bacterial biofilms. The results showed that the infection rate had not changed with the introduction of prophylaxis. However, the uropathogenic population had altered subsequent to the introduction of prophylaxis with E. coli being replaced by E. faecalis as the most common cause of infection. In 63% of the specimens from asymptomatic patients, the bacterial counts per cell were <20, while 81% of specimens from patients with at least one sign and one symptom of urinary tract infection (UTI) had > 20 adherent bacteria per bladder cell. Therefore, it is proposed that counts of > 20 bacteria adherent to sediment transitional epithelial bladder cells may be predictive of symptomatic UTI. Clinical data showed that fluoroquinolone therapy reduced the adhesion counts to <20 per cell in 63% of cases, while trimethoprim-sulfamethoxazole only did so in 44%. Further in vitro testing showed that ciprofloxacin (0.1, 0.5 and 1.0 micrograms/ml) partially or completely eradicated adherent biofilms from 92% of spinal cord injured patients' bladder cells, while ofloxacin did so in 71% cases and norfloxacin in 56%. These findings have important implications for the detection and treatment of bacteriuria in spinal cord injured patients.
Resumo:
Purpose:This study documents the frequency of insulin-like growth factor-II (IGF-II) loss of imprinting (LOI) in a series of 87 bladder tissues. E-cadherin (CDH1) immunolocalization was also investigated due to the known redistribution of this adherence protein to the cytoplasm following exogenous exposure to IGF-II.
Experimental Design: Informative IGF-II cases were identified following DNA-PCR amplification and subsequent sequencing of the transcribable ApaI RFLP in exon 9 of IGF-II. Similar approaches using primer-specific cDNA templates identified the imprinting status of IGF-II in these informative cases. CDH1cellular localization was assessed on a tissue microarray platform of 114 urothelial carcinoma of the bladder (UCB) cases (70 pTanoninvasive and 44 pT1laminapropria invasive) using the commercially available Novocastra antibody.
Results: IGF-IILOI was evident in 7 of17 (41%) UCB tumors and 4 of11 (36%) tumor-associated normal urothelial samples.Two of four pT1grade 3 tumors, the subject of much debate concerning their suitability for radical cystectomy, showed LOI at the IGF-II locus. In those tumors showing IGF-II LOI, 4 of 7 (57%) displayed concomitant CDH1cytoplasmic staining. In contrast, only 3 of 10 (30%) IGF-IImaintenance ofimprinting tumorshad concomitant CDH1cytoplasmiclocalization. UCB cell lines displaying cytoplasmic CDH1immunolocalization expressed significantly higher levels of IGF-II (CAL29, HT1376, and RT112) compared with RT4, a cell line displaying crisp membranous CDH1staining. Finally, cytoplasmic CDH1staining was an independent predictor of a shorter time to recurrence independent of tumor grade and stage.
Conclusions: We suggest that CDH1 cytoplasmic immunolocalization as a result of increased IGF-II levels identifies those nonmuscle invasive presentations most likely to recur and therefore might benefit from more radical nonconserving bladder surgery
Resumo:
Several populations of interstitial cells of Cajal (ICC) exist in the bladder, associated with intramural nerves. Although ICC respond to exogenous agonists, there is currently no evidence of their functional innervation. The objective was to determine whether bladder ICC are functionally innervated. Guinea-pig bladder tissues, loaded with fluo-4AM were imaged with fluorescent microscopy and challenged with neurogenic electrical field stimulation (EFS). All subtypes of ICC and smooth muscle cells (SMC) displayed spontaneous Ca2+-oscillations. EFS (0.5Hz, 2Hz, 10Hz) evoked tetrodotoxin (1µM)-sensitive Ca2+-transients in lamina propria ICC (ICC-LP), detrusor ICC and perivascular ICC (PICC) associated with mucosal microvessels. EFS responses in ICC-LP were significantly reduced by atropine or suramin. SMC and vascular SMC (VSM) also responded to EFS. Spontaneous Ca2+-oscillations in individual ICC-LP within networks occurred asynchronously whereas EFS evoked coordinated Ca2+-transients in all ICC-LP within a field of view. Non-correlated Ca2+-oscillations in detrusor ICC and adjacent SMC pre-EFS, contrasted with simultaneous neurogenic Ca2+ transients evoked by EFS. Spontaneous Ca2+-oscillations in PICC were little affected by EFS, whereas large Ca2+-transients were evoked in pre-EFS quiescent PICC. EFS also increased the frequency of VSM Ca2+-oscillations. In conclusion, ICC-LP, detrusor ICC and PICC are functionally innervated. Interestingly, Ca2+-activity within ICC-LP networks and between detrusor ICC and their adjacent SMC were synchronous under neural control. VSM and PICC Ca2+-activity was regulated by bladder nerves. These novel findings demonstrate functional neural control of bladder ICC. Similar studies should now be carried out on neurogenic bladder to elucidate the contribution of impaired nerve-ICC communication to bladder pathophysiology.