31 resultados para benzopsoralen 3 ethoxy carbonyl 2h benzofuro[3,2 e] 1 benzopiran 2 one


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A wide range of room temperature ionic liquids based on the 3-methylpiperdinium cation core were produced from 3-methylpiperidine, which is a derivative of DYTEK® A amine. First, reaction with 1-bromoalkanes or 1-bromoalkoxyalkanes generated the corresponding tertiary amines (Rmβpip, R = alkyl or alkoxyalkyl); further quaternisation reactions with the appropriate methylating agents yielded the quaternary [Rmmβpip]X salts (X(-) = I(-), [CF3CO2](-) or [OTf](-); Tf = -SO2CF3), and [Rmmβpip][NTf2] were prepared by anion metathesis from the corresponding iodides. All [NTf2](-) salts are liquids at room temperature. [Rmmβpip]X (X(-) = I(-), [CF3CO2](-) or [OTf](-)) are low-melting solids when R = alkyl, but room temperature liquids upon introduction of ether functionalities on R. Neither of the 3-methylpiperdinium ionic liquids showed any signs of crystallisation, even well below 0 °C. Some related non-C-substituted piperidinium and pyrrolidinium analogues were prepared and studied for comparison. Crystal structures of 1-hexyl-1,3-dimethylpiperidinium tetraphenylborate, 1-butyl-3-methylpiperidinium bromide, 1-(2-methoxyethyl)-1-methylpiperidinium chloride and 1-(2-methoxyethyl)-1-methylpyrrolidinium bromide are reported. Extensive structural and physical data are collected and compared to literature data, with special emphasis on the systematic study of the cation ring size and/or asymmetry effects on density, viscosity and ionic conductivity, allowing general trends to be outlined. Cyclic voltammetry shows that 3-methylpiperidinium ionic liquids, similarly to azepanium, piperidinium or pyrrolidinium counterparts, are extremely electrochemically stable; the portfolio of useful alternatives for safe and high-performing electrolytes is thus greatly extended.