135 resultados para behavioural inconsistency
Resumo:
Three hundred and twenty pigs were reared from birth to slaughter at 21 weeks in either barren or enriched environments. The barren environments were defined as intensive housing (slatted floors and minimum recommended space allowances) and the enriched environments incorporated extra space including an area which contained peat and straw in a rack. Behavioural observations showed that environmental enrichment reduced time spent inactive and rime spent involved in harmful social and aggressive behaviour (P
Resumo:
Hunter and Konieczny explored the relationships between measures of inconsistency for a belief base and the minimal inconsistent subsets of that belief base in several of their papers. In particular, an inconsistency value termed MIVC, defined from minimal inconsistent subsets, can be considered as a Shapley Inconsistency Value. Moreover, it can be axiomatized completely in terms of five simple axioms. MinInc, one of the five axioms, states that each minimal inconsistent set has the same amount of conflict. However, it conflicts with the intuition illustrated by the lottery paradox, which states that as the size of a minimal inconsistent belief base increases, the degree of inconsistency of that belief base becomes smaller. To address this, we present two kinds of revised inconsistency measures for a belief base from its minimal inconsistent subsets. Each of these measures considers the size of each minimal inconsistent subset as well as the number of minimal inconsistent subsets of a belief base. More specifically, we first present a vectorial measure to capture the inconsistency for a belief base, which is more discriminative than MIVC. Then we present a family of weighted inconsistency measures based on the vectorial inconsistency measure, which allow us to capture the inconsistency for a belief base in terms of a single numerical value as usual. We also show that each of the two kinds of revised inconsistency measures can be considered as a particular Shapley Inconsistency Value, and can be axiomatically characterized by the corresponding revised axioms presented in this paper.
Resumo:
Tagging animals is frequently employed in ecological studies to monitor individual behaviour, for example postrelease survival and dispersal of captive-bred animals used in conservation programmes. While the majority of studies focus on the efficacy of tags in facilitating the relocation and identification of individuals, few assess the direct effects of tagging in biasing animal behaviour. We used an experimental approach with a control to differentiate the effects of handling and tagging captive-bred juvenile freshwater pearl mussels, Margaritifera margaritifera, prior to release into the wild. Marking individuals with passive integrated transponder (PIT) tags significantly decreased their burrowing rate and, therefore, increased the time taken to burrow into the substrate. This effect was contributed to, in part, by the detrimental impacts of handling, which also significantly affected activity, burrowing ability and the time taken for each individual to emerge and start probing the substrate. Disturbance during handling and tagging may lead to indirect mortality after release by increasing the risk of predation or dislodgement during flooding, thereby potentially compromising any conservation strategy contingent on population supplementation or reintroduction. This is the first study to demonstrate that handling and PIT tagging has a detrimental impact on invertebrate behaviour. Moreover, our results provide useful information that will inform freshwater bivalve conservation strategies.