194 resultados para atomic clusters


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal nanoclusters can be produced cheaply and precisely in an electrochemical environment. Experimentally this method works in some systems, but not in others, and the unusual stability of the clusters has remained a mystery. We have simulated the deposition of the clusters using classical molecular dynamics and studied their stability by grand-canonical Monte Carlo simulations. We find that electrochemically stable clusters occur only in those cases where the two metals involved form stable alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Palladium clusters have been deposited on the surface of a Au(111) electrode with the tip of a scanning tunnelling microscope. The distance over which the tip was moved towards the surface has a decisive influence on the properties of the clusters: the larger this distance, the larger the generated clusters, and the more stable they are. These findings are supported by computer simulations, which further suggest that the larger clusters contain a sizable amount of gold, which enhances their stability. Dissolution of the clusters occurs from the edges rather than layer by layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of palladium clusters, generated with the electrochemical scanning tunneling microscope, have been investigated both by experiments and by computer simulations. The clusters are found to be larger and more stable if the tip is moved further towards the electrode surface in the generation process. The simulations suggest that the larger clusters consist of a palladium - gold mixture, which is more stable than pure palladium. Dissolution of the clusters occurs from the edges rather than layer by layer

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Correlated electron-ion dynamics (CEID) is an extension of molecular dynamics that allows us to introduce in a correct manner the exchange of energy between electrons and ions. The formalism is based on a systematic approximation: small amplitude moment expansion. This formalism is extended here to include the explicit quantum spread of the ions and a generalization of the Hartree-Fock approximation for incoherent sums of Slater determinants. We demonstrate that the resultant dynamical equations reproduce analytically the selection rules for inelastic electron-phonon scattering from perturbation theory, which control the mutually driven excitations of the two interacting subsystems. We then use CEID to make direct numerical simulations of inelastic current-voltage spectroscopy in atomic wires, and to exhibit the crossover from ionic cooling to heating as a function of the relative degree of excitation of the electronic and ionic subsystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two extreme pictures of electron-phonon interactions in nanoscale conductors are compared: one in which the vibrations are treated as independent Einstein atomic oscillators, and one in which electrons are allowed to couple to the full, extended phonon modes of the conductor. It is shown that, under a broad range of conditions, the full-mode picture and the Einstein picture produce essentially the same net power at any given atom in the nanojunction. The two pictures begin to differ significantly in the limit of low lattice temperature and low applied voltages, where electron-phonon scattering is controlled by the detailed phonon energy spectrum. As an illustration of the behaviour in this limit, we study the competition between trapped vibrational modes and extended modes in shaping the inelastic current-voltage characteristics of one-dimensional atomic wires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A tight-binding model is developed to describe the electron-phonon coupling in atomic wires under an applied voltage and to model, their inelastic current-voltage spectroscopy. Particular longitudinal phonons are found to have greatly enhanced coupling to the electronic states of the system. This leads to a large drop in differential conductance at threshold energies associated with these phonons. It is found that with increasing tension these energies decrease, while the size of the conductance drops increases, in agreement with experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A total energy tight-binding model with a basis of just one s state per atom is introduced. It is argued that this simplest of all tight-binding models provides a surprisingly good description of the structural stability and elastic constants of noble metals. By assuming inverse power scaling laws for the hopping integrals and the repulsive pair potential, it is shown that the density matrix in a perfect primitive crystal is independent of volume, and structural energy differences and equations of state are then derived analytically. The model is most likely to be of use when one wishes to consider explicitly and self-consistently the electronic and atomic structures of a generic metallic system, with the minium of computation expense. The relationship to the free-electron jellium model is described. The applicability of the model to other metals is also considered briefly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent experiments suggest that gold single-atom contacts and atomic chains break at applied voltages of 1 to 2 V. In order to understand why current flow affects these defect-free conductors, we have calculated the current-induced forces on atoms in a Au chain between two Au electrodes. These forces are not by themselves sufficient to rupture the chain. However, the current reduces the work to break the chain, which results in a dramatic increase in the probability of thermally activated spontaneous fracture of the chain. This current-induced embrittlement poses a fundamental limit to the current-carrying capacity of atomic wires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a self-consistent tight-binding formalism to calculate the forces on individual atoms due to the flow of electrical current in atomic-scale conductors. Simultaneously with the forces, the method yields the local current density and the local potential in the presence of current flow, allowing a direct comparison between these quantities. The method is applicable to structures of arbitrary atomic geometry and can be used to model current-induced mechanical effects in realistic nanoscale junctions and wires. The formalism is implemented within a simple Is tight-binding model and is applied to two model structures; atomic chains and a nanoscale wire containing a vacancy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spectrum of collective excitations of oblate toroidal condensates within the Bogoliubov approximation was studied, and the dynamical stability of ring currents around the torus explored. The transition from spheroidal to toroidal geometry of the trap displaced the energy levels into narrow bands. A simple, but accurate, formula was detailed for the lowest angular acoustic modes of excitation, and the splitting energy when a background current is present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Double beam modulation is widely used in atomic collision experiments in the case where the noise arising froth each of the beams exceeds the measured signal. A method for minimizing the statistical uncertainty in a measured signal in a given time period is discussed, and a flexible modulation and counting system based on a low cost PIC microcontroller is described. This device is capable of modifying the acquisition parameters in real time during the course of an experimental run. It is shown that typical savings in data acquisition time of approximately 30% can be achieved using this optimized modulation scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ground state energy, structure, and harmonic vibrational modes of 1-butyl-3-methylimidazolium triflate ([bmim][Tf]) clusters have been computed using an all-atom empirical potential model. Neutral and charged species have been considered up to a size (30 [bmim][Tf] pairs) well into the nanometric range. Free energy computations and thermodynamic modeling have been used to predict the equilibrium composition of the vapor phase as a function of temperature and density. The results point to a nonnegligible concentration of very small charged species at pressures (P ~ 0.01 Pa) and temperatures (T 600 K) at the boundary of the stability range of [bmim][Tf]. Thermal properties of nanometric neutral droplets have been investigated in the 0 T 700 K range. A near-continuous transition between a liquidlike phase at high T and a solidlike phase at low T takes place at T ~ 190 K in close correspondence with the bulk glass point Tg ~ 200 K. Solidification is accompanied by a transition in the dielectric properties of the droplet, giving rise to a small permanent dipole embedded into the solid cluster. The simulation results highlight the molecular precursors of several macroscopic properties and phenomena and point to the close competition of Coulomb and dispersion forces as their common origin.