72 resultados para arts as expression of the ineffable


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary element in the cAMP signal transduction pathway is the cAMP-dependent protein kinase (PKA). Expression of the RIα subunit of type I PKA is elevated in a variety of human tumours and cancer cell lines. The purpose of this study was to assess the prognostic importance of RIα expression in patients with ovarian cancer. We have evaluated the expression of RIα in a panel of human ovarian tumours (n = 40) and five human ovarian cancer cell lines using quantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis. The human ovarian cell lines OAW42 and OTN14 express high endogenous levels of RIα mRNA and protein (at significantly higher mRNA levels than high tissue expressors, P < 0.05). The ovarian cell line A2780 expresses low endogenous levels of RIα mRNA and protein (also at higher mRNA levels than low tissue expressors, P < 0.05). Quantitative RT-PCR revealed no significant difference in RIα mRNA expression between different ovarian histological subtypes in this study. No associations were found between RIα mRNA expression and differentiation state. RIα mRNA expression was significantly associated with tumour stage (P = 0.0036), and this remained significant in univariate analysis (P = 0.0002). A trend emerged between RIα mRNA expression levels and overall survival in univariate analysis (P = 0.051), however, by multivariate analysis, stage remained the major determinant of overall survival (P = 0.0001). This study indicates that in ovarian epithelial tumours high RIα mRNA expression is associated with advanced stage disease. RIα expression may be of predictive value in ovarian cancer and may be associated with dysfunctional signalling pathways in this cancer type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclear factor kappa B (NF-kappaB) activation has been proposed as a cardinal feature of tumourigenesis, although the precise mechanism, frequency, relevance, and extent of NF-kappaB activation in lymphomas remain to be fully elucidated. In this study, expression profiling and tissue microarray studies of 209 and 323 non-Hodgkin's lymphomas (NHLs) respectively, including the most frequent sub-types of NHL, were employed to generate a hypothesis concerning the most common NF-kappaB targets in NHL. These analyses showed that NF-kappaB activation is a common phenomenon in NHL, resulting in the expression of distinct sets of NF-kappaB target genes, depending on the cell context. BCL2 and BIRC5/Survivin were identified as key NF-kappaB targets and their expression distinguished small and aggressive B-cell lymphomas, respectively. Interestingly, in the vast majority of B-cell lymphomas, the expression of these markers was mutually exclusive. A set of genes was identified whose expression correlates either with BIRC5/Survivin or with BCL2. BIRC5/Survivin expression, in contrast to BCL2, was associated with a signature of cell proliferation (overexpression of cell cycle control, DNA repair, and polymerase genes), which may contribute to the aggressive phenotype and poor prognosis of these lymphomas. Strikingly, mantle cell lymphoma and chronic lymphocytic leukaemia expressed highly elevated levels of BCL2 protein and mRNA, higher than that observed in reactive mantle zone cells or even in follicular lymphomas, where BCL2 expression is deregulated through the t(14;18) translocation. In parallel with this observation, BIRC5/Survivin expression was higher in Burkitt's lymphoma and diffuse large B-cell lymphoma than in non-tumoural germinal centre cells. In vitro studies confirmed that NF-kappaB activation contributes to the expression of both markers. In cell lines representing aggressive lymphomas, NF-kappaB inhibition resulted in a decrease in BIRC5/Survivin expression. Meanwhile, in chronic lymphocytic leukaemia (CLL)-derived lymphocytes, NF-kappaB inhibition resulted in a marked decrease in BCL2 expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ovarian cancer is very treatable in the early stages of disease; however, it is usually detected in the later stages, at which time, treatment is no longer as effective. If discovered early (Stage I), there is a 90% chance of five-year survival. Therefore, it is imperative that early-stage biomarkers are identified to enhance the early detection of ovarian cancer. Cancer-testis antigens (CTAs), such as Per ARNT SIM (PAS) domain containing 1 (PASD1), are unique in that their expression is restricted to immunologically restricted sites, such as the testis and placenta, which do not express MHC class I, and cancer, making them ideally positioned to act as targets for immunotherapy as well as potential biomarkers for cancer detection where expressed. We examined the expression of PASD1a and b in a number of cell lines, as well as eight healthy ovary samples, eight normal adjacent ovarian tissues, and 191 ovarian cancer tissues, which were predominantly stage I (n = 164) and stage II (n = 14) disease. We found that despite the positive staining of skin cancer, only one stage Ic ovarian cancer patient tissue expressed PASD1a and b at detectable levels. This may reflect the predominantly stage I ovarian cancer samples examined. To examine the restriction of PASD1 expression, we examined endometrial tissue arrays and found no expression in 30 malignant tumor tissues, 23 cases of hyperplasia, or 16 normal endometrial tissues. Our study suggests that the search for a single cancer-testes antigen/biomarker that can detect early ovarian cancer must continue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patterns of glycosylation are important in cancer, but the molecular mechanisms that drive changes are often poorly understood. The androgen receptor drives prostate cancer (PCa) development and progression to lethal metastatic castration-resistant disease. Here we used RNA-Seq coupled with bioinformatic analyses of androgen-receptor (AR) binding sites and clinical PCa expression array data to identify ST6GalNAc1 as a direct and rapidly activated target gene of the AR in PCa cells. ST6GalNAc1 encodes a sialytransferase that catalyses formation of the cancer-associated sialyl-Tn antigen (sTn), which we find is also induced by androgen exposure. Androgens induce expression of a novel splice variant of the ST6GalNAc1 protein in PCa cells. This splice variant encodes a shorter protein isoform that is still fully functional as a sialyltransferase and able to induce expression of the sTn-antigen. Surprisingly, given its high expression in tumours, stable expression of ST6GalNAc1 in PCa cells reduced formation of stable tumours in mice, reduced cell adhesion and induced a switch towards a more mesenchymal-like cell phenotype in vitro. ST6GalNAc1 has a dynamic expression pattern in clinical datasets, beingsignificantly up-regulated in primary prostate carcinoma but relatively down-regulated in established metastatic tissue. ST6GalNAc1 is frequently upregulated concurrently with another important glycosylation enzyme GCNT1 previously associated with prostate cancer progression and implicated in Sialyl Lewis X antigen synthesis. Together our data establishes an androgen-dependent mechanism for sTn antigen expression in PCa, and are consistent with a general role for the androgen receptor in driving important coordinate changes to the glycoproteome during PCa progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors previously reported increased expression of the Salmonella enterica serovar Typhi (S. typhi) rfaH gene when the bacterial cells reach stationary phase. In this study, using a lacZ fusion to the rfaH promoter region, they demonstrate that growth-dependent regulation of rfaH expression occurs at the level of transcription initiation. It was also observed that production of the lipopolysaccharide (LPS) O-antigen by S. typhi Ty2 correlated with the differential expression of rfaH during bacterial growth. This was probably due to the increased cellular levels of RfaH, since expression of the distal gene in the O-antigen gene cluster of S. typhi Ty2, wbaP, was also increased during stationary growth, as demonstrated by RT-PCR analysis. Examination of the sequences upstream of the rfaH coding region revealed homologies to potential binding sites for the RcsB/RcsA dimer of the RcsC/YopJ/RcsB phosphorelay regulatory system and for the RpoN alternative sigma factor. The expression of the rfaH gene in rpoN and rcsB mutants of S. typhi Ty2 was measured. The results indicate that inactivation of rpoN, but not of rcsB, suppresses the growth-phase-dependent induction of rfaH expression. Furthermore, production of beta-galactosidase mediated by the rfaH-lacZ fusion increased approximately fourfold when bacteria were grown in a nitrogen-limited medium. Nitrogen limitation was also shown to increase the expression of the O-antigen by the wild-type S. typhi Ty2, as demonstrated by a similar electrophoretic profile to that observed during the stationary phase of growth in rich media. It is therefore concluded that the relationship between LPS production and nitrogen limitation parallels the pattern of rfaH regulation under the control of RpoN and is consistent with the idea that RpoN modulates LPS formation via its effect on rfaH gene expression during bacterial growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human acute-phase serum amyloid A protein (A-SAA) is a major acute phase reactant, the concentration of which increases dramatically as part of the body's early response to inflammation. A-SAA is the product of two almost identical genes, SAA1 and SAA2, which are induced by the pro-inflammatory cytokines, IL-1 and IL-6. In this study, we examine the roles played by the 5'- and 3'-untranslated regions (UTRs) of the SAA2 mRNA in regulating A-SAA2 expression. SAA2 promoter-driven luciferase reporter gene constructs carrying the SAA2 5'-UTR and/or 3'-UTR were transiently transfected into the HepG2 human hepatoma cell line. After induction of chimeric mRNA with IL-1beta and IL-6, the SAA2 5'- and 3'-UTRs were both able to posttranscriptionally modify the expression of the luciferase reporter. The SAA2 5'-UTR promotes efficient translation of the chimeric luciferase transcripts, whereas the SAA2 3'-UTR shares this property and also significantly accelerates the rate of reporter mRNA degradation. Our data strongly suggest that the SAA2 5'- and 3'-UTRs each play significant independent roles in the posttranscriptional regulation of A-SAA2 protein synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In acne vulgaris, antimicrobial peptides (AMPs) could play a dual role; i.e., protective by acting against Propionibacterium acnes, pro-inflammatory by acting as signalling molecules. The cutaneous expression of 15 different AMPs was investigated in acne patients; furthermore, the impact of isotretinoin therapy on AMP expression was analysed in skin biopsies from 13 patients with acne vulgaris taken before, during and after a 6-month treatment cycle with isotretinoin using quantitative real-time polymerase chain reaction. Cutaneous expression of the AMPs cathelicidin, human β-defensin-2 (HBD-2), lactoferrin, lysozyme, psoriasin (S100A7), koebnerisin (S100A15), and RNase 7 was upregulated in untreated acne vulgaris, whereas α-defensin-1 (HNP-1) was downregulated compared to controls. While relative expression levels of cathelicidin, HBD-2, lactoferrin, psoriasin (S100A7), and koebnerisin (S100A15) decreased during isotretinoin treatment, only those of cathelicidin and koebnerisin returned to normal after 6 months of isotretinoin therapy. The increased expression of lysozyme and RNase 7 remained unaffected by isotretinoin treatment. The levels of granulysin, RANTES (CCL5), perforin, CXCL9, substance P, chromogranin B, and dermcidin were not regulated in untreated acne patients and isotretinoin had no effect on these AMPs. In conclusion, the expression of various AMPs is altered in acne vulgaris. Isotretinoin therapy normalizes the cutaneous production of distinct AMPs while the expression of others is still increased in healing acne. Considering the antimicrobial and pro-inflammatory role of AMPs, these molecules could serve as specific targets for acne therapy and maintenance of clinical remission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have compared the expression of the known measles virus (MV) receptors, membrane cofactor protein (CD46) and the signaling lymphocyte-activation molecule (SLAM), using immunohistochemistry, in a range of normal peripheral tissues (known to be infected by MV) as well as in normal and subacute sclerosing panencephalitis (SSPE) brain. To increase our understanding of how these receptors could be utilized by wild-type or vaccine strains in vivo, the results have been considered with regard to the known route of infection and systemic spread of MV. Strong staining for CD46 was observed in endothelial cells lining blood vessels and in epithelial cells and tissue macrophages in a wide range of peripheral tissues, as well as in Langerhans' and squamous cells in the skin. In lymphoid tissues and blood, subsets of cells were positive for SLAM, in comparison to CD46, which stained all nucleated cell types. Strong CD46 staining was observed on cerebral endothelium throughout the brain and also on ependymal cells lining the ventricles and choroid plexus. Comparatively weaker CD46 staining was observed on subsets of neurons and oligodendrocytes. In SSPE brain sections, the areas distant from lesion sites and negative for MV by immunocytochemistry showed the same distribution for CD46 as in normal brain. However, cells in lesions, positive for MV, were negative for CD46. Normal brain showed no staining for SLAM, and in SSPE brain only subsets of leukocytes in inflammatory infiltrates were positive. None of the cell types most commonly infected by MV show detectable expression of SLAM, whereas CD46 is much more widely expressed and could fulfill a receptor function for some wild-type strains. In the case of wild-type stains, which are unable to use CD46, a further as yet unknown receptor(s) would be necessary to fully explain the pathology of MV infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to investigate the effects of elevated D-glucose concentrations on vascular smooth muscle cell (VSMC) expression of the platelet-derived growth factor (PDGF) beta receptor and VSMC migratory behavior. Immunoprecipitation, immunofluorescent staining, and RT-PCR of human VSMCs showed that elevated D-glucose induced an increase in the PDGF beta receptor that was inhibited by phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathway inhibitors. Exposure to 25 mmol/l D-glucose (HG) induced increased phosphorylation of protein kinase B (PKB) and extracellular-regulated kinase (ERK). All HG chemotaxis assays (with either 10 days' preincubation in HG or no preincubation) in a FCS or PDGF-BB gradient showed positive chemotaxis, whereas those in 5 mmol/l D-glucose did not. Assays were also run with concentrations ranging from 5 to 25 mmol/l D-glucose. Chemotaxis was induced at concentrations >9 mmol/l D-glucose. An anti-PDGF beta receptor antibody inhibited glucose-potentiated VSMC chemotaxis, as did the inhibitors for the PI3K and MAPK pathways. This study has shown that small increases in D-glucose concentration, for a short period, increase VSMC expression of the PDGF beta receptor and VSMC sensitivity to chemotactic factors in serum, leading to altered migratory behavior in vitro. It is probable that similar processes occur in vivo with glucose-enhanced chemotaxis of VSMCs, operating through PDGF beta receptor-operated pathways, contributing to the accelerated formation of atheroma in diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cho SH, Naber K, Hacker J, Ziebuhr W. Institut für Molekulare Infektionsbiologie, Röntgenring 11, D-97070 Würzburg, Germany. Biofilm production in Staphylococcus epidermidis is an important virulence factor that is mediated by the expression of the icaADBC operon. In this study 41 S. epidermidis isolates obtained from catheter-related urinary tract infections were analyzed for the presence of the icaADBC operon and biofilm formation. Eighteen of 41 isolates (44%) were shown to carry ica-specific DNA, but only 11 isolates (27%) produced biofilms spontaneously under normal growth conditions. Upon induction by external stress or antibiotics, biofilm formation could be stimulated in five of seven ica-positive, biofilm-negative isolates, indicating that the icaADBC expression was down-regulated in these strains. Genetic analyses of the ica gene clusters of the remaining two ica-positive, biofilm-negative strains revealed a spontaneous ICAC::IS256 insertion in one strain. Insertion of the element caused a target site duplication of seven base pairs and a biofilm-negative phenotype. After repeated passages the insertion mutant was able to revert to a biofilm-forming phenotype which was due to the precise excision of IS256 from the icaC gene. The data show that icaC::IS256 integrations occur during S. epidermidis polymer-related infections and the results highlight the biological relevance of the IS256-mediated phase variation of biofilm production in S. epidermidis during an infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chain growth probability (alpha value) is one of the most significant parameters in Fischer-Tropsch (FT) synthesis. To gain insight into the chain growth probability, we systematically studied the hydrogenation and C-C coupling reactions with different chain lengths on the stepped Co(0001) surface using density functional theory calculations. Our findings elucidate the relationship between the barriers of these elementary reactions and the chain length. Moreover, we derived a general expression of the chain growth probability and investigated the behavior of the alpha value observed experimentally. The high methane yield results from the lower chain growth rate for C-1 + C-1 coupling compared with the other coupling reactions. After C-1, the deviation of product distribution in FT synthesis from the Anderson-Schulz-Flory distribution is due to the chain length-dependent paraffin/olefin ratio. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the alpha-olefin selectivity in Fischer-Tropsch (FT) synthesis using density functional theory (131717) calculations. We calculated the relevant elementary steps from C-2 to C-6 species. Our results showed that the barriers of hydrogenation and dehydrogenation reactions were constant with different chain lengths, and the chemisorption energies of alpha-olefins from DFT calculations also were very similar, except for C-2 species. A simple expression of the paraffin/olefin ratio was obtained based on a kinetic model. Combining the expression of the paraffin/olefin ratio and our calculation results, experimental findings are satisfactorily explained. We found that the physical origin of the chain length dependence of paraffin/olefin ratio is the chain length dependence of both the van der Waals interaction between adsorbed alpha-olefins and metal surfaces and the entropy difference between adsorbed and gaseous alpha-olefins, and that the greater chemisorption energy of ethylene is the main reason for the abnormal ethane/ethylene ratio. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pericytes are known to communicate with endothelial cells by direct contact and by releasing cytokines such as TGF-beta. There is also strong evidence that pericytes act as regulators of endothelial cell proliferation and differentiation. We have investigated the effect of pericyte-conditioned medium (PCM) on proliferation of human microvascular endothelial cells in vitro, together with the expression of the vasoregulatory molecules, constitutive and inducible nitric oxide synthases (ecNOS and iNOS), and endothelin-1 (ET-1). Expression was measured at the mRNA level using semiquantitative RT-PCR for all three genes and at the protein level for ecNOS and iNOS using Western blotting. Growth curves for HMECs showed that PCM inhibits proliferation, eventually leading to cell death. Exposure to PCM repressed iNOS mRNA expression fivefold after 6 h. A similar, though delayed, reduction in protein levels was observed. ecNOS mRNA was slightly induced at 6 h, though there was no significant change in ecNOS protein. By contrast, ET-1 mRNA was induced 2.3-fold after 6 h exposure to PCM. We conclude that pericytes release a soluble factor or factors that are potent inhibitors of endothelial cell growth and promote vasoconstriction by up-regulating endothelin-1 and down-regulating iNOS. (C) 2000 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biological role of steroid 5 alpha-reductase isozymes (encoded by the SRD5A1 and SRD5A2 genes) and angiogenic factors that play important roles in the pathogenesis and vascularization of prostate cancer (PC) is poorly understood. The sub-cellular expression of these isozymes and vascular endothelial growth factor (VEGF) in PC tissue microarrays (n=62) was examined using immunohistochemistry. The effect of SRD5A inhibition on the angiogenesis pathway genes in PC was also examined in prostate cell lines, LNCaP, PC3, and RWPE-1, by treating them with the SRD5A inhibitors finasteride and dutasteride, followed by western blot, quantitative PCR, and ELISA chip array techniques. In PC tissues, nuclear SRD5A1 expression was strongly associated with higher cancer Gleason scores (P=0.02), higher cancer stage (P=0.01), and higher serum prostate specific antigen (PSA) levels (P=0.01), whereas nuclear SRD5A2 expression was correlated with VEGF expression (P=0.01). Prostate tumor cell viability was significantly reduced in dutasteride-treated PC3 and RWPE-1 cells compared with finasteride-treated groups. Expression of the angiogenesis pathway genes transforming growth factor beta 1 (TGFB1), endothelin (EDN1), TGF alpha (TGFA), and VEGFR1 was upregulated in LNCaP cells, and at least 7 out of 21 genes were upregulated in PC3 cells treated with finasteride (25 mu M). Our findings suggest that SRD5A1 expression predominates in advanced PC, and that inhibition of SRD5A1 and SRD5A2 together was more effective in reducing cell numbers than inhibition of SRD5A2 alone. However, these inhibitors did not show any significant difference in prostate cell angiogenic response. Interestingly, some angiogenic genes remained activated after treatment, possibly due to the duration of treatment and tumor resistance to inhibitors. Endocrine-Related Cancer (2010) 17 757-770

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transient outward rectifying conductances or A-like conductances in sympathetic preganglionic neurons (SPN) are prolonged, lasting for hundreds of milliseconds to seconds and are thought to play a key role in the regulation of SPN firing frequency. Here, a multidisciplinary electrophysiological, pharmacological and molecular single-cell rt-PCR approach was used to investigate the kinetics, pharmacological profile and putative K + channel subunits underlying the transient outward rectifying conductance expressed in SPN. SPN expressed a 4-aminopyridine (4-AP) sensitive transient outward rectification with significantly longer decay kinetics than reported for many other central neurons. The conductance and corresponding current in voltage-clamp conditions was also sensitive to the Kv4.2 and Kv4.3 blocker phrixotoxin-2 (1-10 µM) and the blocker of rapidly inactivating Kv channels, pandinotoxin-Ka (50 nM). The conductance and corresponding current was only weakly sensitive to the Kv1 channel blocker tityustoxin-Ka and insensitive to dendrotoxin I (200 nM) and the Kv3.4 channel blocker BDS-II (1 µM). Single-cell RT-PCR revealed mRNA expression for the a-subunits Kv4.1 and Kv4.3 in the majority and Kv1.5 in less than half of SPN. mRNA for accessory ß-subunits was detected for Kvß2 in all SPN with differential expression of mRNA for KChIP1, Kvß1 and Kvß3 and the peptidase homologue DPP6. These data together suggest that the transient outwardly rectifying conductance in SPN is mediated by members of the Kv4 subfamily (Kv4.1 and Kv4.3) in association with the ß-subunit Kvß2. Differential expression of the accessory ß subunits, which may act to modulate channel density and kinetics in SPN, may underlie the prolonged and variable time-course of this conductance in these neurons. © 2011 IBRO.