50 resultados para alkali-activated natural pozzolan (AANP) concrete
Resumo:
This paper presents the results from the experimental investigation on heat activated prestressing of Shape Memory Alloy (SMA) wires for active confinement of concrete sections. Active confinement of concrete is found to be much more effective than passive confinement which becomes effective only when the concrete starts to dilate. Active confinement achieved using conventional prestressing techniques often faces many obstacles due to practical limitations. A class of smart materials that has recently drawn attention in civil engineering is the super elastic SMA which has the ability to undergo reversible hysteretic shape change known as the shape memory effect. The shape memory effect of SMAs can be utilized to develop a convenient prestressing technique for active confinement of concrete sections.
In this study a series of experimental tests are conducted to study Heat Activated Prestress (HAP) in SMAs. Three different types of tests are conducted with different loading protocol to determine parameters such as HAP, residual strain after heating and range of strain that can be used for effective active confinement after HAP. Test results show a maximum HAP of about 500 MPa can be achieved after heating and approximately 450MPa is retained at 25oC in specimens pre-strained by 6%. A substantial amount of strain recovery upon unloading and after heating the SMA wires is recorded. About 2.5% elastic strain recovery upon unloading from 6% strain level is observed. In the specimen pre-strained by 6%, a total of 4% strain is recovered when unloaded after heating. A strain range of 3% is found available for effective confinement after HAP. Test results demonstrate that SMAs have unique features that can be intelligently employed in many civil engineering applications including active confinement of concrete sections.
Resumo:
In order to predict compressive strength of geopolymers prepared from alumina-silica natural products, based on the effect of Al 2 O 3 /SiO 2, Na 2 O/Al 2 O 3, Na 2 O/H 2 O, and Na/[Na+K], more than 50 pieces of data were gathered from the literature. The data was utilized to train and test a multilayer artificial neural network (ANN). Therefore a multilayer feedforward network was designed with chemical compositions of alumina silicate and alkali activators as inputs and compressive strength as output. In this study, a feedforward network with various numbers of hidden layers and neurons were tested to select the optimum network architecture. The developed three-layer neural network simulator model used the feedforward back propagation architecture, demonstrated its ability in training the given input/output patterns. The cross-validation data was used to show the validity and high prediction accuracy of the network. This leads to the optimum chemical composition and the best paste can be made from activated alumina-silica natural products using alkaline hydroxide, and alkaline silicate. The research results are in agreement with mechanism of geopolymerization.
Read More: http://ascelibrary.org/doi/abs/10.1061/(ASCE)MT.1943-5533.0000829
Resumo:
The farm production of silage as a winter-feed supplement is widespread. However, the bins in which silage is produced are subject to acidic and microbial attacks. Both these types of attack can lead to a weakening and failure of the concretes, especially on the outer lip of the open side of the silage pit. Consequently, the development of an acid-resistant concrete that can extend the life span of silage bins on farms could lead to considerable cost savings for farmers and, hence, can improve farm productivity. This paper reports on test results of an investigation into the behaviour of concrete containing seawater-neutralised bauxite refinery residues (Bauxsol™) exposed to sulphuric acid environments in the laboratory and to silage effluents. The concrete manufactured had a fixed water–cement ratio of 0.55 and natural sand was replaced with the Bauxsol™ at 0%, 5%, 10%, 15% and 20% by cement mass. Results indicated that the use of Bauxsol™ as a sand replacement material improved the behaviour of concrete both in sulphuric acid in the laboratory as well as in the silage effluent. Consequently, it is concluded that the Bauxsol™ can be used to replace 10% of natural sand to produce concrete that is resistant to silage effluents, providing an extended service life over conventional concretes used in silage pits.
Resumo:
Various industrial by-products, such as fly ash, ground granulated blast-furnace slag and silica fume, have been used in concrete to improve its properties. This also enables any environmental issues associated with their disposal. Another material that is available in large quantities and requiring alternative methods of disposal is the Bauxite Refinery Reside (BRR) from the Bayer process used to extract alumina from bauxite. As this is highly caustic and causes many health hazards, Virotec International Ltd. developed a patented technology to convert this into a material that can be used commercially, known as Bauxsol™, for various environmental remediation applications. This use is limited to small quantities of seawater-neutralised BRR and hence an investigation was carried out to establish its potential utilisation as a sand replacement material in concrete. In addition to fresh properties of concrete containing seawater-neutralised BRR up to 20% by mass of Portland cement, mechanical and durability properties were determined. These properties indicated that seawater-neutralised BRR can be used to replace natural sand up to 10% by mass of cement to improve the durability properties of concrete without detrimentally affecting their physical properties. Combining these beneficial effects with environmental remediation applications, it can be concluded that there are specific applications where concretes containing seawater-neutralised BRR could be used.
Resumo:
We performed comprehensive genome-wide gene expression profiling (GEP) of extranodal nasal-type natural killer/T-cell lymphoma (NKTL) using formalin-fixed, paraffin-embedded tissue (n = 9) and NK cell lines (n = 5) in comparison with normal NK cells, with the objective of understanding the oncogenic pathways involved in the pathogenesis of NKTL and to identify potential therapeutic targets. Pathway and network analysis of genes differentially expressed between NKTL and normal NK cells revealed significant enrichment for cell cycle-related genes and pathways, such as PLK1, CDK1, and Aurora-A. Furthermore, our results demonstrated a pro-proliferative and anti-apoptotic phenotype in NKTL characterized by activation of Myc and nuclear factor kappa B (NF-kappa B), and deregulation of p53. In corroboration with GEP findings, a significant percentage of NKTLs (n = 33) overexpressed c-Myc (45.4%), p53 (87.9%), and NF-kappa B p50 (67.7%) on immunohistochemistry using a tissue microarray containing 33 NKTL samples. Notably, overexpression of survivin was observed in 97% of cases. Based on our findings, we propose a model of NKTL pathogenesis where deregulation of p53 together with activation of Myc and NF-kappa B, possibly driven by EBV LMP-1, results in the cumulative up-regulation of survivin. Down-regulation of survivin with Terameprocol (EM-1421, a survivin inhibitor) results in reduced cell viability and increased apoptosis in tumour cells, suggesting that targeting survivin may be a potential novel therapeutic strategy in NKTL. Copyright (C) 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Resumo:
We have shown that proteinase-activated receptor-2 (PAR(2)) activation in the airways leads to allergic sensitization to concomitantly inhaled Ags, thus implicating PAR(2) in the pathogenesis of asthma. Many aeroallergens with proteinase activity activate PAR(2). To study the role of PAR(2) in allergic sensitization to aeroallergens, we developed a murine model of mucosal sensitization to cockroach proteins. We hypothesized that PAR(2) activation in the airways by natural allergens with serine proteinase activity plays an important role in allergic sensitization. Cockroach extract (CE) was administered to BALB/c mice intranasally on five consecutive days (sensitization phase) and a week later for four more days (challenge phase). Airway hyperresponsiveness (AHR) and allergic airway inflammation were assessed after the last challenge. To study the role of PAR(2), mice were exposed intranasally to a receptor-blocking anti-PAR(2) Ab before each administration of CE during the sensitization phase. Mucosal exposure to CE induced eosinophilic airway inflammation, AHR, and cockroach-specific IgG1. Heat-inactivated or soybean trypsin inhibitor-treated CE failed to induce these effects, indicating that proteinase activity plays an important role. The use of an anti-PAR(2) blocking Ab during the sensitization phase completely inhibited airway inflammation and also decreased AHR and the production of cockroach-specific IgG1. PAR(2) activation by CE acts as an adjuvant for allergic sensitization even in the absence of functional TLR4. We conclude that CE induces PAR(2)-dependent allergic airway sensitization in a mouse model of allergic airway inflammation. PAR(2) activation may be a general mechanism used by aeroallergens to induce allergic sensitization. The Journal of Immunology, 2011, 186: 3164-3172.
Resumo:
The chemical and mechanical stability of slag activated with two different concentrations of sodium sulfate (Na2SO4) after exposure to elevated temperatures ranging from 200 to 800 °C with an increment of 200 °C has been examined. Compressive strengths and pH of the hardened pastes before and after the exposure were determined. The various decomposition phases formed were identified using X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The results indicated that Na2SO4 activated slag has a better resistance to the degradation caused by exposure to elevated temperature up to 600 °C than Portland cement system as its relative strengths are superior. The finer slag and higher Na2SO4 concentration gave better temperature resistance. Whilst the pH of the hardened pastes decreased with an increase in temperature, it still maintained a sufficiently high pH for the protection of reinforcing bar against corrosion.
Resumo:
This paper investigates the influence of three fundamentally different durability enhancing products, viz. microsilica, controlled permeability formwork and silane, on some of the physical proper ties of near surface concrete. Microsilica (silica fume) is a pozzolan, controlled permeability formwork (CPF) is used to provide a free draining surface to a concrete form, while silane is a surface treatment applied to hardened concrete to reduce the ingress of water. Comparisons are made between the products when used individually and used in conjunction with each other, with a view to assessing whether the use of combinations of products may be desirable to improve the durability of concrete in certain circumstances. The effect of these materials on various durability parameters, such as freeze-thaw deterioration, carbonation resistance and chloride ingress, is considered in terms of their effect on permeation properties and surface strength. The results indicated that a combination of silane and CPF produces concrete with very low air permeability and sorptivity values. The influence of microsilica was more pronounced in increasing the surface strength of concrete.
Resumo:
A new generation of concrete, Ultra-high performance fibre reinforced concrete (UHPFRC) has been developed for its outstanding mechanical performance and shows a very promising future in construction applications. In this paper, several possibilities are examined for reducing the price of producing UHPFRC and for bringing UHPFRC away from solely precast applications and onto the construction site as an in situ material. Recycled glass cullet and two types of local natural sand were examined as replacement materials for the more expensive silica sand normally used to produce UHPFRC. In addition, curing of UHPFRC cubes and prisms at 20 degrees C and 90 degrees C has been investigated to determine differences in both mechanical and ductility.
Resumo:
Aging has been shown to be accompanied by various changes in the lymphocyte subset distribution in the elderly. We have investigated more fully, and in a large number of subjects, age-related changes within several subpopulations bearing natural killer (NK) cell-associated surface antigens and changes in several cytokines involved in NK cell expansion. A total of 229 healthy subjects from all decades of life from 20 to 98 years of age was included in this cross-sectional study. A significant increase with age was found in both the absolute counts and the proportions of CD3-CD(16+56)+, CD3+CD(16+56)+, CD57+CD8+, CD57+CD8(low)+, and CD57+CD8- cells, whereas the CD57+CD8(high)+ subset, which may represent the cytolytic T cell population more precisely, showed less change with age. Some evidence is also provided to suggest that these expanded NK cell populations are in an activated state. Soluble IL-2 receptor levels were also found to increase significantly with age and correlated with certain NK cell subsets. Although the functions of some of these subsets remain to be elucidated, their expansion in the elderly may represent a remodeling of the immune system with increasing age, with an increase in non-MHC-restricted cells perhaps compensating for the previously reported decline in T and B cells in the elderly. Alternatively, increased numbers of these cells may be a direct result of cytokine dysregulation or increased antigenic or neoplastic cell challenge.
Resumo:
Arching or compressive membrane action (CMA) in reinforced concrete slabs occurs as a result of the great difference between the tensile and compressive strength of concrete. Cracking of the concrete causes a migration of the neutral axis which is accompanied by in-plane expansion of the slab at its boundaries. If this natural tendency to expand is restrained, the development of arching action enhances the strength of the slab. The term arching action is normally used to describe the arching phenomenon in one-way spanning slabs and compressive membrane action is normally used to describe the arching phenomenon in two-
way spanning slabs. This encyclopedic article presents the background to the discovery of the phenomenon of arching action and presents a factual history of the approaches to the treatment of arching action in the United Kingdom and North American bridge deck design codes. The article summarises the theoretical methodology used in the United Kingdom Design Manual for Roads and Bridges, BD81/02, which was based on the work by Kirkpatrick, Rankin & Long at Queen's University Belfast.
Resumo:
The objective of this study was to examine the estrogen and androgen hormone removal efficiency of reactive (Connelly zero-valent iron (ZVI), Gotthart Maier ZVI) and sorptive (AquaSorb 101 granular activated carbon (GAC) and OrganoLoc PM-100 organo clay (OC)) materials from HPLC grade water and constructed wetland system (CWS) treated dairy farm wastewater. Batch test studies were performed and hormone concentration analysis carried out using highly sensitive reporter gene assays (RGAs). The results showed that hormonal interaction with these materials is selective for individual classes of hormones. Connelly ZVI and AquaSorb 101 GAC were more efficient in removing testosterone (Te) than 17?-estradiol (E2) and showed faster removal rates of estrogen and androgen than the other materials. Gotthart Maier ZVI was more efficient in removing E2 than Te. OrganoLoc PM-100 OC achieved the lowest final concentration of E2 equivalent (EEQ) and provided maximum removal of both estrogens and androgens.