109 resultados para acute respiratory infections


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute respiratory infections are the leading cause of global child mortality. In the developing world, nasal oxygen therapy is often the only treatment option for babies who are suffering from respiratory distress. Without the added pressure of bubble Continuous Positive Airway Pressure (bCPAP) which helps maintain alveoli open, babies struggle to breathe and can suffer serious complications, and frequently death. A stand-alone bCPAP device can cost $6,000, too expensive for most developing world hospitals. Here, we describe the design and technical evaluation of a new, rugged bCPAP system that can be made in small volume for a cost-of-goods of approximately $350. Moreover, because of its simple design--consumer-grade pumps, medical tubing, and regulators--it requires only the simple replacement of a <$1 diaphragm approximately every 2 years for maintenance. The low-cost bCPAP device delivers pressure and flow equivalent to those of a reference bCPAP system used in the developed world. We describe the initial clinical cases of a child with bronchiolitis and a neonate with respiratory distress who were treated successfully with the new bCPAP device.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Infections pose a substantial burden to the health of older adults. In this report, we describe the proceedings of a workshop to formulate and prioritize research questions about infections in older adults using an interdisciplinary approach. Methods: Researchers from four sectors (basic science, clinical sciences, health services and epidemiology/determinants of health) and representatives from various Canadian local, provincial, and federal stakeholder groups were invited to a two-day workshop. Five multi-disciplinary groups and stakeholders from each of three healthcare settings (long term, acute care and community) discussed research priorities for each of the settings. Five to ten research questions were identified for each setting. Results: The research questions proposed ranged from risk factors and outcomes for different infections to the effect of nutrition on infection and the role of alternative and complementary medicine in treating infections. Health service issues included barriers to immunization, prolongation of hospital length of stay by infection, use of care paths for managing infections, and decision-making in determining the site of care for individuals with infections. Clinical questions included risk factor assessment for infection, the effectiveness of preventative strategies, and technology evaluation. Epidemiologic issues included the challenge of achieving a better understanding of respiratory infections in the community and determining the prevalence of colonization with multi-resistant bacteria. Conclusions: The questions are of direct relevance to researchers in a wide variety of fields. Bringing together a multi-disciplinary group of researchers to frame and prioritize research questions about aging is feasible, participants valued the opinions of people working in other areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Respiratory syncytial viral (RSV) infections are a frequent cause of chronic obstructive pulmonary disease (COPD) exacerbations, which are a major factor in disease progression and mortality. RSV is able to evade antiviral defenses to persist in the lungs of COPD patients. Though RSV infection has been identified in COPD, its contribution to cigarette smoke-induced airway inflammation and lung tissue destruction has not been established. Here we examine the long-term effects of cigarette smoke exposure, in combination with monthly RSV infections, on pulmonary inflammation, protease production and remodeling in mice. RSV exposures enhanced the influx of macrophages, neutrophils and lymphocytes to the airways of cigarette smoke exposed C57BL/6J mice. This infiltration of cells was most pronounced around the vasculature and bronchial airways. By itself, RSV caused significant airspace enlargement and fibrosis in mice and these effects were accentuated with concomitant smoke exposure. Combined stimulation with both smoke and RSV synergistically induced cytokine (IL-1a, IL-17, IFN-c, KC, IL-13, CXCL9, RANTES, MIF and GM-CSF) and protease (MMP-2, -8, -12, -13, -16 and cathepsins E, S, W and Z) expression. In addition, RSV exposure caused marked apoptosis within the airways of infected mice, which was augmented by cigarette smoke exposure. RSV and smoke exposure also reduced protein phosphatase 2A (PP2A) and protein tyrosine phosphates (PTP1B) expression and activity. This is significant as these phosphatases counter smoke-induced inflammation and protease expression. Together, these findings show for the first time that recurrent RSV infection markedly enhances inflammation, apoptosis and tissue destruction in smoke-exposed mice. Indeed, these results indicate that preventing RSV transmission and infection has the potential to significantly impact on COPD severity and progression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The coronavirus main protease, Mpro, is considered a major target for drugs suitable to combat coronavirus infections including the severe acute respiratory syndrome (SARS). In this study, comprehensive HPLC- and FRET-substrate-based screenings of various electrophilic compounds were performed to identify potential Mpro inhibitors. The data revealed that the coronaviral main protease is inhibited by aziridine- and oxirane-2-carboxylates. Among the trans-configured aziridine-2,3-dicarboxylates the Gly-Gly-containing peptide 2c was found to be the most potent inhibitor.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objectives: Acute lung injury and the acute respiratory distress syndrome are characterized by noncardiogenic pulmonary edema, which can be assessed by measurement of extravascular lung water. Traditionally, extravascular lung water has been indexed to actual body weight (mL/kg). Because lung size is dependent on height rather than weight, we hypothesized indexing to predicted body weight may be a better predictor of mortality in acute lung injury/acute respiratory distress syndrome.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Lung protective ventilation has been widely adopted for the management of acute lung injury (ALI) and acute respiratory distress syndrome ( ARDS). Consequently, ventilator associated lung injury and mortality have decreased. It is not known if this ventilation strategy changes the prognostic value of previously identified demographic and pulmonary predictors of mortality, such as respiratory compliance and the arterial oxygen tension to inspired oxygen fraction ratio (Pao(2)/Fio(2)).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The World Health Organisation (WHO) has set regional elimination goals for Measles (MV) eradication to be achieved by 2020 or earlier. A major question is whether an opportunity for veterinary virus infection of humans may arise when MV is eradicated and if vaccination is discontinued. Lessons have been learned from animal to human virus transmission i.e. human immunodeficiency virus (HIV) and more recently from severe acute respiratory syndrome (SARS) and avian influenza virus infections. We are therefore alerted to the risk of zoonosis from the veterinary morbilliviruses. In this review the evidence from viral genomics, animal studies and cell culture experiments will be explored to evaluate the possibility of cross infection of humans with these viruses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Morbidity and mortality have declined only modestly in patients with clinical acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), despite extensive research into the pathophysiology. Current treatment remains primarily supportive with lung-protective ventilation and a fluid conservative strategy. Pharmacologic therapies that reduce the severity of lung injury in preclinical models have not yet been translated to effective clinical treatment options. Consequently, further research in translational therapies is needed. Cell-based therapy with mesenchymal stem cells (MSCs) is one attractive new therapeutic approach. MSCs have the capacity to secrete multiple paracrine factors that can regulate endothelial and epithelial permeability, decrease inflammation, enhance tissue repair, and inhibit bacterial growth. This review will focus on recent studies, which support the potential therapeutic use of MSCs in ALI/ARDS, with an emphasis on the role of paracrine soluble factors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Acute lung injury (ALI) is a common devastating clinical syndrome characterized by life-threatening respiratory failure requiring mechanical ventilation and multiple organ failure. There are in vitro, animal studies and pre-clinical data suggesting that statins may be beneficial in ALI. The Hydroxymethylglutaryl-CoA reductase inhibition with simvastatin in Acute lung injury to Reduce Pulmonary dysfunction (HARP-2) trial is a multicenter, prospective, randomized, allocation concealed, double-blind, placebo-controlled clinical trial which aims to test the hypothesis that treatment with simvastatin will improve clinical outcomes in patients with ALI.

Methods/Design: Patients fulfilling the American-European Consensus Conference Definition of ALI will be randomized in a 1: 1 ratio to receive enteral simvastatin 80 mg or placebo once daily for a maximum of 28 days. Allocation to randomized groups will be stratified with respect to hospital of recruitment and vasopressor requirement. Data will be recorded by participating ICUs until hospital discharge, and surviving patients will be followed up by post at 3, 6 and 12 months post randomization. The primary outcome is number of ventilator-free days to day 28. Secondary outcomes are: change in oxygenation index and sequential organ failure assessment score up to day 28, number of non pulmonary organ failure free days to day 28, critical care unit mortality; hospital mortality; 28 day post randomization mortality and 12 month post randomization mortality; health related quality of life at discharge, 3, 6 and 12 months post randomization; length of critical care unit and hospital stay; health service use up to 12 months post-randomization; and safety. A total of 540 patients will be recruited from approximately 35 ICUs in the UK and Ireland. An economic evaluation will be conducted alongside the trial. Plasma and urine samples will be taken up to day 28 to investigate potential mechanisms by which simvastatin might act to improve clinical outcomes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background Human bone marrow-derived mesenchymal stem (stromal) cells (hMSCs) improve survival in mouse models of acute respiratory distress syndrome (ARDS) and reduce pulmonary oedema in a perfused human lung preparation injured with Escherichia coli bacteria. We hypothesised that clinical grade hMSCs would reduce the severity of acute lung injury (ALI) and would be safe in a sheep model of ARDS.

Methods Adult sheep (30–40 kg) were surgically prepared. After 5 days of recovery, ALI was induced with cotton smoke insufflation, followed by instillation of live Pseudomonas aeruginosa (2.5×1011 CFU) into both lungs under isoflurane anaesthesia. Following the injury, sheep were ventilated, resuscitated with lactated Ringer's solution and studied for 24 h. The sheep were randomly allocated to receive one of the following treatments intravenously over 1 h in one of the following groups: (1) control, PlasmaLyte A, n=8; (2) lower dose hMSCs, 5×106 hMSCs/kg, n=7; and (3) higher-dose hMSCs, 10×106 hMSCs/kg, n=4.

Results By 24 h, the PaO2/FiO2 ratio was significantly improved in both hMSC treatment groups compared with the control group (control group: PaO2/FiO2 of 97±15 mm Hg; lower dose: 288±55 mm Hg (p=0.003); higher dose: 327±2 mm Hg (p=0.003)). The median lung water content was lower in the higher-dose hMSC-treated group compared with the control group (higher dose: 5.0 g wet/g dry [IQR 4.9–5.8] vs control: 6.7 g wet/g dry [IQR 6.4–7.5] (p=0.01)). The hMSCs had no adverse effects.

Conclusions Human MSCs were well tolerated and improved oxygenation and decreased pulmonary oedema in a sheep model of severe ARDS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coronaviruses are important pathogens that cause acute respiratory diseases in humans. Replication of the 30-kb positive-strand RNA genome of coronaviruses and discontinuous synthesis of an extensive set of subgenome-length RNAs (transcription) are mediated by the replicase-transcriptase, a barely characterized protein complex that comprises several cellular proteins and up to 16 viral subunits. The coronavirus replicase-transcriptase was recently predicted to contain RNA-processing enzymes that are extremely rare or absent in other RNA viruses. Here, we established and characterized the activity of one of these enzymes, replicative nidoviral uridylate-specific endoribonuclease (NendoU). It is considered a major genetic marker that discriminates nidoviruses (Coronaviridae, Arteriviridae, and Roniviridae) from all other RNA virus families. Bacterially expressed forms of NendoU of severe acute respiratory syndrome coronavirus and human coronavirus 229E were revealed to cleave single-stranded and double-stranded RNA in a Mn2+-dependent manner. Single-stranded RNA was cleaved less specifically and effectively, suggesting that double-stranded RNA is the biologically relevant NendoU substrate. Double-stranded RNA substrates were cleaved upstream and downstream of uridylates at GUU or GU sequences to produce molecules with 2'-3' cyclic phosphate ends. 2'-O-ribose-methylated RNA substrates proved to be resistant to cleavage by NendoU, indicating a functional link with the 2'-O-ribose methyltransferase located adjacent to NendoU in the coronavirus replicative polyprotein. A mutagenesis study verified potential active-site residues and allowed us to inactivate NendoU in the full-length human coronavirus 229E clone. Substitution of D6408 by Ala was shown to abolish viral RNA synthesis, demonstrating that NendoU has critical functions in viral replication and transcription.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel coronavirus has been identified as the causative agent of severe acute respiratory syndrome (SARS). The viral main proteinase (Mpro, also called 3CLpro), which controls the activities of the coronavirus replication complex, is an attractive target for therapy. We determined crystal structures for human coronavirus (strain 229E) Mpro and for an inhibitor complex of porcine coronavirus [transmissible gastroenteritis virus (TGEV)] Mpro, and we constructed a homology model for SARS coronavirus (SARS-CoV) Mpro. The structures reveal a remarkable degree of conservation of the substrate-binding sites, which is further supported by recombinant SARS-CoV Mpro-mediated cleavage of a TGEV Mpro substrate. Molecular modeling suggests that available rhinovirus 3Cpro inhibitors may be modified to make them useful for treating SARS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Replication of the giant RNA genome of severe acute respiratory syndrome (SARS) coronavirus (CoV) and synthesis of as many as eight subgenomic (sg) mRNAs are mediated by a viral replicase-transcriptase of outstanding complexity that includes an essential endoribonuclease activity. Here, we show that the CoV replicative machinery, unlike that of other RNA viruses, also uses an exoribonuclease (ExoN) activity, which is associated with nonstructural protein (nsp) 14. Bacterially expressed forms of SARS-CoV nsp14 were shown to act on both ssRNAs and dsRNAs in a 3'5' direction. The activity depended on residues that are conserved in the DEDD exonuclease superfamily. The protein did not hydrolyze DNA or ribose-2'-O-methylated RNA substrates and required divalent metal ions for activity. A range of 5'-labeled ssRNA substrates were processed to final products of 8–12 nucleotides. When part of dsRNA or in the presence of nonlabeled dsRNA, the 5'-labeled RNA substrates were processed to significantly smaller products, indicating that binding to dsRNA in cis or trans modulates the exonucleolytic activity of nsp14. Characterization of human CoV 229E ExoN active-site mutants revealed severe defects in viral RNA synthesis, and no viable virus could be recovered. Besides strongly reduced genome replication, specific defects in sg RNA synthesis, such as aberrant sizes of specific sg RNAs and changes in the molar ratios between individual sg RNA species, were observed. Taken together, the study identifies an RNA virus ExoN activity that is involved in the synthesis of multiple RNAs from the exceptionally large genomic RNA templates of CoVs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Macro domains constitute a protein module family found associated with specific histones and proteins involved in chromatin metabolism. In addition, a small number of animal RNA viruses, such as corona- and toroviruses, alphaviruses, and hepatitis E virus, encode macro domains for which, however, structural and functional information is extremely limited. Here, we characterized the macro domains from hepatitis E virus, Semliki Forest virus, and severe acute respiratory syndrome coronavirus (SARS-CoV). The crystal structure of the SARS-CoV macro domain was determined at 1.8-Å resolution in complex with ADP-ribose. Information derived from structural, mutational, and sequence analyses suggests a close phylogenetic and, most probably, functional relationship between viral and cellular macro domain homologs. The data revealed that viral macro domains have relatively poor ADP-ribose 1"-phosphohydrolase activities (which were previously proposed to be their biologically relevant function) but bind efficiently free and poly(ADP-ribose) polymerase 1-bound poly(ADP-ribose) in vitro. Collectively, these results suggest to further evaluate the role of viral macro domains in host response to viral infection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Replication of the ~30-kb plus-strand RNA genome of coronaviruses and synthesis of an extensive set of subgenome-length RNAs are mediated by the replicase-transcriptase, a membrane-bound protein complex containing several cellular proteins and up to 16 viral nonstructural proteins (nsps) with multiple enzymatic activities, including protease, polymerase, helicase, methyltransferase, and RNase activities. To get further insight into the replicase gene-encoded functions, we characterized the coronavirus X domain, which is part of nsp3 and has been predicted to be an ADP-ribose-1"-monophosphate (Appr-1"-p) processing enzyme. Bacterially expressed forms of human coronavirus 229E (HCoV-229E) and severe acute respiratory syndrome-coronavirus X domains were shown to dephosphorylate Appr-1"-p, a side product of cellular tRNA splicing, to ADP-ribose in a highly specific manner. The enzyme had no detectable activity on several other nucleoside phosphates. Guided by the crystal structure of AF1521, an X domain homolog from Archaeoglobus fulgidus, potential active-site residues of the HCoV-229E X domain were targeted by site-directed mutagenesis. The data suggest that the HCoV-229E replicase polyprotein residues, Asn 1302, Asn 1305, His 1310, Gly 1312, and Gly 1313, are part of the enzyme's active site. Characterization of an Appr-1"-pase-deficient HCoV-229E mutant revealed no significant effects on viral RNA synthesis and virus titer, and no reversion to the wild-type sequence was observed when the mutant virus was passaged in cell culture. The apparent dispensability of the conserved X domain activity in vitro indicates that coronavirus replicase polyproteins have evolved to include nonessential functions. The biological significance of the novel enzymatic activity in vivo remains to be investigated.