75 resultados para accessory gland
Resumo:
Twenty-four shed-reared lambs were each infected orally with 250 metacercariae of Fasciola hepatica, using either the triclabendazole (TCBZ)-sensitive Cullompton isolate or the TCBZ-resistant Sligo isolate. Twelve weeks after infection the lambs were treated with TCBZ (10 mg/kg) or with the experimental fasciolicide, Compound Alpha (Cpd alpha), a benzimidazole derivative of TCBZ (15 mg/kg). The lambs were euthanised 48,72 and 96 h after TCBZ treatment, or 24, 48 and 72 h after Cpd a treatment, and flukes were collected from the liver and/or gall bladder of each animal. Untreated animals harbouring 12-week infections were euthanised 24 h after administration of anthelmintic to the treatment groups, and the untreated flukes provided control material. A semi-quantitative assessment of the degree of histological change induced by the two drugs after different times of exposure was achieved by scoring the intensity of three well-defined lesions that developed in the testes and uteri of a representative sample of flukes from each lamb. In general, it was found that in those tissues where active meiosis and/or mitosis occurred (testis, ovary, and vitelline follicles), there was progressive loss of cell content due to apparent failure of cell division to keep pace with expulsion of the mature or effete products. Further, actively dividing cell types tended to become individualised, rounded and condensed, characteristic of apoptotic cell death. Protein synthetic activity was apparently inhibited in the Mehlis' secretory cells. In the uterus, where successful formation of shelled eggs represents the culmination of a complex sequence of cytokinetic, cytological and synthetic activity involving the vitelline follicles, the ovary and the Mehlis' gland, histological evidence indicating failure of ovigenesis was evident from 24 h post-treatment onwards. The development of these lesions may be related to the known antitubulin activity of the benzimidazole class of anthelmintics, to the induction of apoptosis in cells where mitosis or meiosis has aborted due to failure of spindle formation, and to drug-induced inhibition of protein synthesis. The semi-quantitative findings indicated that Cpd a is slightly less efficacious than TCBZ itself in causing histological damage to the reproductive structures of TCBZ-sensitive flukes, and that, like TCBZ, it caused no histological damage in flukes of the TCBZ-resistant isolate. This study illustrates the potential utility of histological techniques for conveniently screening representative samples of flukes in field trials designed to validate instances of drug resistance or to test the efficacy of new products against known drug-resistant and drug-susceptible fluke isolates. It also provides reference criteria for drug-induced histopathological changes in fluke reproductive structures which may aid interpretation of TEM findings. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Desmoplastic small round cell tumor is a rare malignant neoplasm mostly occurring in the vicinity of or within the peritoneal cavity, and is uncommon in the head and neck region. Tumor location within a major salivary gland is exceptional. We report a case of a 41-year-old Chinese man with a history of diabetes mellitus and end-stage renal failure on peritoneal dialysis with a desmoplastic small round cell tumor occurring in the left submandibular gland. Fine-needle aspiration cytology showed variably cohesive clusters of small cells with hyperchromatic nuclei and fine granular chromatin. On histology the neoplasm displayed classic features of a desmoplastic small round cell tumor with angulated nests of small round blue cells in a fibromyxoid/desmoplastic stroma. Neoplastic cells were immunoreactive for cytokeratins (AE1/3), desmin (paranuclear dot-like), WT-1 (nuclear), epithelial membrane antigen, and CD56. EWS gene translocation and EWS-WT1 gene fusion were detected by fluorescence in situ hybridization and reverse transcriptase polymerase chain reaction, respectively. The case presented is the sixth case of and the oldest reported patient with a desmoplastic small round cell tumor occurring in a major salivary gland to date. Desmoplastic small round cell tumor should be considered in the differential diagnosis of a salivary gland neoplasm with a basaloid or small cell pattern on fine-needle aspiration cytology.
Resumo:
Venom has only been recently discovered to be a basal trait of the Anguimorpha lizards. Consequently, very little is known about the timings of toxin recruitment events, venom protein molecular evolution, or even the relative physical diversifications of the venom system itself. A multidisciplinary approach was used to examine the evolution across the full taxonomical range of this similar to 130 million-year-old clade. Analysis of cDNA libraries revealed complex venom transcriptomes. Most notably, three new cardioactive peptide toxin types were discovered (celestoxin, cholecystokinin, and YY peptides). The latter two represent additional examples of convergent use of genes in toxic arsenals, both having previously been documented as components of frog skin defensive chemical secretions. Two other novel venom gland-overexpressed modified versions of other protein frameworks were also recovered from the libraries (epididymal secretory protein and ribonuclease). Lectin, hyaluronidase, and veficolin toxin types were sequenced for the first time from lizard venoms and shown to be homologous to the snake venom forms. In contrast, phylogenetic analyses demonstrated that the lizard natriuretic peptide toxins were recruited independently of the form in snake venoms. The de novo evolution of helokinestatin peptide toxin encoding do-mains within the lizard venom natriuretic gene was revealed to be exclusive to the helodermatid/anguid subclade. New isoforms were sequenced for cysteine-rich secretory protein, kallikrein, and phospholipase A 2 toxins. Venom gland morphological analysis revealed extensive evolutionary tinkering. Anguid glands are characterized by thin capsules and mixed glands, serous at the bottom of the lobule and mucous toward the apex. Twice, independently this arrangement was segregated into specialized serous protein-secreting glands with thick capsules with the mucous lobules now distinct (Heloderma and the Lanthanotus/Varanus clade). The results obtained highlight the importance of utilizing evolution-based search strategies for biodiscovery and emphasize the largely untapped drug design and development potential of lizard venoms. Molecular & Cellular Proteomics 9:2369-2390, 2010.
Resumo:
Transient outward rectifying conductances or A-like conductances in sympathetic preganglionic neurons (SPN) are prolonged, lasting for hundreds of milliseconds to seconds and are thought to play a key role in the regulation of SPN firing frequency. Here, a multidisciplinary electrophysiological, pharmacological and molecular single-cell rt-PCR approach was used to investigate the kinetics, pharmacological profile and putative K + channel subunits underlying the transient outward rectifying conductance expressed in SPN. SPN expressed a 4-aminopyridine (4-AP) sensitive transient outward rectification with significantly longer decay kinetics than reported for many other central neurons. The conductance and corresponding current in voltage-clamp conditions was also sensitive to the Kv4.2 and Kv4.3 blocker phrixotoxin-2 (1-10 µM) and the blocker of rapidly inactivating Kv channels, pandinotoxin-Ka (50 nM). The conductance and corresponding current was only weakly sensitive to the Kv1 channel blocker tityustoxin-Ka and insensitive to dendrotoxin I (200 nM) and the Kv3.4 channel blocker BDS-II (1 µM). Single-cell RT-PCR revealed mRNA expression for the a-subunits Kv4.1 and Kv4.3 in the majority and Kv1.5 in less than half of SPN. mRNA for accessory ß-subunits was detected for Kvß2 in all SPN with differential expression of mRNA for KChIP1, Kvß1 and Kvß3 and the peptidase homologue DPP6. These data together suggest that the transient outwardly rectifying conductance in SPN is mediated by members of the Kv4 subfamily (Kv4.1 and Kv4.3) in association with the ß-subunit Kvß2. Differential expression of the accessory ß subunits, which may act to modulate channel density and kinetics in SPN, may underlie the prolonged and variable time-course of this conductance in these neurons. © 2011 IBRO.
Resumo:
Eight indoor-reared cross-bred sheep with no prior exposure to Fasciola hepatica were infected by oral gavage with 200 metacercarial cysts of the triclabendazole (TCBZ)-susceptible Cullompton isolate of F. hepatica. Twelve weeks after infection, sheep were treated with 10 mg/kg triclabendazole. Two sheep were euthanised per time period; at 48 h, 72 h and 96 h post-treatment (pt). Two untreated control sheep were euthanised at 96 h pt. Flukes were recovered from the liver and, if present, from the gall bladder of the sheep. They were processed for whole mount analysis, histology and transmission electron microscopy of the female reproductive system; specifically, the uterus, vitelline follicles. Mehlis' gland and ovary.
Resumo:
Lambs infected with the Cullompton triclabendazole (ICBZ)-susceptible isolate of Fasciola hepatica were treated with TCBZ at a dosage of 10 mg/kg at 16 weeks post-infection. Adult flukes were recovered from the liver at 3 h, 24 h, 48 h and 60 h post-treatment (pt). They were processed for histological analysis of the uterus, Mehlis' gland, vitellaria, ovary and testis. At 3 h pt, the flukes were essentially similar to the controls and were producing normal eggs. Egg production had ceased by 24 h pt. At this time period, the cells of the Mehlis' gland showed some evidence of vacuolation, but otherwise were relatively normal. A shift in the population of vitelline cells towards mature cells was observed at 24 h pt, and this trend continued at later time-periods. It was accompanied by a breakdown of the cells and the presence of apoptotic bodies. Marked changes to the ovary were first noted at 48 h Pt, as evidenced by vacuolation and the presence of apoptotic bodies. Some disruption to the testis was seen at 24 h pt, with a reduction in the population of spermatogenic cells, the appearance of apoptotic bodies and some peripheral vacuolation of the tubules. These abnormalities increased in severity with longer time periods pt. The results bring forward the time-line of cessation of egg production by 24 h, demonstrating that this process is affected very rapidly pt. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The epidermis of the predatory terrestrial flatworm. Artioposthia triangulata has been examined by transmission electron microscopy for the presence of rhabdiform secretions. Two types of secretion are present: epidermal rhabdoids, produced by a special type of epidermal cell and true adenal rhabdites produced by gland cells beneath the epidermis. The epidermal rhabdoids are formed from Golgi-derived vesicles, which Fuse together to form the developing rhabdoid. Within the latter is a filamentous network on which granular material is deposited and coalesces to form a rod-shaped inclusion. The rhabdoids accumulate in the apical region of the cell and release their contents from the apical surface. The adenal rhabdites are formed by Golgi-derived vesicles. which become more elongated and their contents more electron-dense as they mature. The vesicles Fuse together to form the primordial rhabdite, which continues to lengthen with the addition of further vesicles. The neck of the rhabdite-forming cell passes between the muscle layers and through the basement membrane to open into the base of the epidermal cell. The rhabdites move from the cell body through the neck into the cytoplasm of the epidermal cell and make their way to the apical surface where they are released to the exterior.
Resumo:
The localization and distribution of glutamate-like immunoreactivity (IR) in the nervous system of both the cestode Mesocestoides corti and the trematode Fasciola hepatica has been determined by an indirect immunofluorescent technique, in conjunction with confocal scanning laser microscopy (CSLM). Immunostaining was widespread in the central (CNS) and peripheral (PNS) nervous systems of both species examined. In the CNS, IR was evident in nerve cells and fibres in the cerebral ganglia, the cerebral commissure and the dorsal, ventral and longitudinal nerve cords. In the peripheral nervous system (PNS) of M. corti, IR was apparent in nerve plexuses associated with the subtegmental musculature and the musculature associated with the anteriorly positioned suckers. In F. hepatica, IR was evident in the innervation of both the oral and the ventral suckers, In the reproductive system of F. hepatica, glutamate-IR was observed around the ootype/Mehlis' gland complex.
Resumo:
The localization and distribution of SALMFamide immunoreactivity (IR), SI(GFNSALMFamide), in the nervous system of both the adult and larval stages of the trematode Schistosoma mansoni has been determined by an indirect immunofluorescent technique in conjunction with confocal scanning laser microscopy (CSLM). Immunostaining was widespread in the nervous system of adult male and female S. mansoni. In the central nervous system (CNS), IR was evident in nerve cells and fibres in the anterior ganglia, cerebral commissure and dorsal and ventral nerve cords. In the peripheral nervous system (PNS), IR was apparent in nerve plexuses associated with the subtegmental musculature, oral and ventral suckers, the lining of the gynaecophoric canal, and in fine nerve fibres innervating the dorsal tubercles of the male worm. In the reproductive system of male and female worms, S1-IR was only observed around the ootype/Mehlis' gland complex in the female. Immunostaining was also evident in the nervous system of both miracidium and cercarial larval stages. A post-embedding, IgG-conjugated colloidal gold immunostaining technique was employed to examine the subcellular distribution of SALMFamide-IR in the CNS of S. mansoni. Gold labelling of peptide was localized over dense-cored vesicles within nerve cell bodies and fibres constituting the neuropile of the anterior ganglia, cerebral commissure and nerve cords of the CNS. Antigen pre-absorption studies indicated that the results obtained do suggest S1-like immunostaining and not cross-reactivity with other peptides, in particular FMRFamide.
Resumo:
Standard indirect immunocytochemical techniques have been interfaced with confocal scanning laser microscopy (for whole-mount preparations) and epifluorescence microscopy (for cryosections) to investigate the occurrence and distribution of serotoninergic and peptidergic nerve elements in adult H. diminuta. Serotonin (5-HT)-immunoreactivity (IR) was widespread throughout the worm, occurring in the paired cerebral ganglia, transverse commissure, the 10 longitudinal nerve cords and in a plethora of small nerve fibres of the peripheral nervous system. An abundance of serotoninergic nerve cell bodies was found in association with the lateral nerve cords. The genital atrium and accessory reproductive ducts were richly innervated with serotoninergic nerve fibres. Thirty-five antisera to 20 vertebrate regulatory peptides and 1 invertebrate peptide (FMRFamide) were used to screen the worm for neuropeptide IR. Immunostaining was obtained with antisera raised to pancreatic polypeptide (PP), peptide YY (PYY), neuropeptide Y (NPY), substance P (SP), peptide histidine isoleucine (PHI), xenopsin (XP) and FMRFamide. The most extensive pattern of IR occurred with antisera to PP and PYY, IR being evident in the cerebral ganglia, transverse commissure, longitudinal nerve cords and in small nerve fibres that ramified throughout the parenchyma. A series of bipolar nerve cell bodies between the median nerve cords displayed PP/PYY-IR. The distribution of FMRFamide-IR was reminiscent of the PP/PYY pattern but was less extensive. Comparison of the serotoninergic and peptidergic nervous systems has revealed general similarities and some distinct differences, especially with regard to the distribution of immunoreactive nerve cell bodies. Quantitative data are presented on the levels of PP-, SP-, PHI-, and gastrin-releasing peptide (GRP)-immunoreactivities demonstrable in acid-alcohol extracts of whole worms. The highest level of peptide IR determined was recorded for PP.
Resumo:
Disruption of glandular architecture associates with poor clinical outcome in high-grade colorectal cancer (CRC). Phosphatase and tensin homolog deleted on chromosome ten (PTEN) regulates morphogenic growth of benign MDCK (Madin Darby Canine Kidney) cells through effects on the Rho-like GTPase cdc42 (cell division cycle 42). This study investigates PTEN-dependent morphogenesis in a CRC model. Stable short hairpin RNA knockdown of PTEN in Caco-2 cells influenced expression or localization of cdc42 guanine nucleotide exchange factors and inhibited cdc42 activation. Parental Caco-2 cells formed regular hollow gland-like structures (glands) with a single central lumen, in three-dimensional (3D) cultures. Conversely, PTEN-deficient Caco-2 ShPTEN cells formed irregular glands with multiple abnormal lumens as well as intra- and/or intercellular vacuoles evocative of the high-grade CRC phenotype. Effects of targeted treatment were investigated. Phosphatidinylinositol 3-kinase (PI3K) modulating treatment did not affect gland morphogenesis but did influence gland number, gland size and/or cell size within glands. As PTEN may be regulated by the nuclear receptor peroxisome proliferator-activated receptor-? (PPAR?), cultures were treated with the PPAR? ligand rosiglitazone. This treatment enhanced PTEN expression, cdc42 activation and rescued dysmorphogenesis by restoring single lumen formation in Caco-2 ShPTEN glands. Rosiglitazone effects on cdc42 activation and Caco-2 ShPTEN gland development were attenuated by cotreatment with GW9662, a PPAR? antagonist. Taken together, these studies show PTEN-cdc42 regulation of lumen formation in a 3D model of human CRC glandular morphogenesis. Treatment by the PPAR? ligand rosiglitazone, but not PI3K modulators, rescued colorectal glandular dysmorphogenesis of PTEN deficiency.
Resumo:
This paper responds to recent calls for more academic research and critical discussion on the relationship between spatial planning and city branding. Through the lens of Liverpool, the article analyses how key planning projects have delivered major transformations in the city's built environment and cultural landscape. More specifically, in concentrating on the performative nature of spatial planning it reveals the physical, symbolic and discursive re-imaging of Liverpool into a 'world class city'. Another aspect of the paper presents important socioeconomic datasets and offers a critical reading of the re-branding in showing how it presents an inaccurate representation of Liverpool. The evidence provided indicates that a more accurate label for Liverpool is a polarised and divided city, thereby questioning the fictive spectacle of city branding. Finally, the paper ends with some critical commentary on the role of spatial planning as an accessory to the sophistry of city branding.
Resumo:
Two peptides with substance-P-like immunoreactivity were isolated in pure form from an extract of the brain of the elasmobranch fish, Scyliorhinus canicula (european common dogfish). One peptide was identical to scyliorhinin I, previously identified in dogfish intestine, and the second was the undecapeptide Lys-Pro-Arg-Pro-Gly-Gln-Phe-Phe-Gly-Leu-Met-CONH2 which is structurally similar to mammalian substance P Scyliorhinin II or a peptide analogous to mammalian neurokinin A were not detected in the extract. Synthetic dogfish substance P ([Lys1, Arg3, Gly5]substance P) was approximately threefold more potent than mammalian substance P (K(d) = 0.21 +/- 0.11 nM versus K(d)= 0.74 +/- 0.17 nM; mean +/- SD; n = 6) in inhibiting the binding of I-125-labelled substance P to neurokinin (NK1) receptors in rat submandibular gland membranes. The vasodilator action of tachykinins in mammals is mediated primarily through interaction with NK1 receptors. Bolus intravenous injections of [Lys1, Arg3, Gly5]substance P (100 pmol) and scyliorhinin I (100 pmol) produced appreciable (>4 kPa) decreases in arterial blood pressure in the rat whereas intravenous injections of up to 5 nmol of the peptides into conscious, unrestrained dogfish produced no change in arterial blood pressure, pulse amplitude or heart rate. Injections of greater amounts of the peptides (10-50 nmol) produced a slight increase (400-667 Pa) in blood pressure. The data indicate that mammalian-type NK1 tachykinin receptors are not involved in cardiovascular regulation in elasmobranch fish.
Resumo:
The skin secretions of frogs and toads (Anura) have long been a known source of a vast abundance of bioactive substances. In the past decade, transcriptome data of the granular glands of anuran skin has given new impetus to investigations of the putative constituent peptides. Alytes obstetricans was recently investigated and novel peptides with antimicrobial activity were isolated and functionally characterised. However, genetic data for the evolutionarily ancient lineage to which Alytes belongs (midwife toads; Alytidae) remains unavailable.
Here we present the first such genetic data for Alytidae, derived via the granular gland transcriptome of a closely-related species of midwife toad, Alytes maurus. First, we present nucleotide sequences of the entire peptide precursors for four novel antimicrobial peptides (AMPs). The two precursors resemble those from Bombinatoridae in both their structural architecture and amino acid sequence. Each precursor comprises two AMPs as tandem repeats, with a member of the alyteserin-1 family (alyteserin-1Ma: GFKEVLKADLGSLVKGIAAHVAN-NH2 or alyteserin-1Mb: GFKEVLKAGLGSLVKGIPAHVAN-NH2) followed by its corresponding member from the alyteserin-2 family (alyteserin-2Ma: FIGKLISAASGLLSHL-NH2 or alyteserin-2Mb: ILGAIIPLVSGLLSHL-NH2). Synthetic replicates of the four AMPs possessed minimal inhibitory concentrations (MICs) ranging from 9.5 to 300 µM, with the most potent being alyteserin-2Ma. Second, we also cloned the cDNA encoding an alytesin precursor, with the active alytesin exhibiting high sequence identity to bombesin-related peptides from other frogs. All putative mature peptide sequences were confirmed to be present in the skin secretion via LC/MS.
The close structural resemblance of the alyteserin genes that we isolated for A. maurus with those of Bombina provide independent molecular evidence for a close evolutionary relationship between these genera as well as more support for the convergent evolution of the AMP system within anurans. In contrast to the more evolutionarily conserved nature of neuropeptides (including alytesin, which we also isolated), the more variable nature of the AMP system together with the sporadic distribution of AMPs among anuran amphibians fuels in part our hypothesis that the latter system was co-opted secondarily to fulfil a function in the innate immune system, having originally evolved for defence against potential macropredators.
Resumo:
To investigate the association of genetic polymorphisms of the interleukin-18 (IL-18) pathway to Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC). Most cases of EAC arise in a background of reflux-induced BE. Genetic influences in this pathway are poorly understood. IL-18 is a multifunctional cytokine implicated in anti-tumor immunity. A number of polymorphisms of the IL-18 and IL-18 receptor-accessory protein (IL-18RAP) genes have been reported to alter gene expression and have recently been linked to inflammatory processes and various tumors, but have not heretofore been studied in BE and EAC.