99 resultados para abstract reasoning
Resumo:
Ligand prediction has been driven by a fundamental desire to understand more about how biomolecules recognize their ligands and by the commercial imperative to develop new drugs. Most of the current available software systems are very complex and time-consuming to use. Therefore, developing simple and efficient tools to perform initial screening of interesting compounds is an appealing idea. In this paper, we introduce our tool for very rapid screening for likely ligands (either substrates or inhibitors) based on reasoning with imprecise probabilistic knowledge elicited from past experiments. Probabilistic knowledge is input to the system via a user-friendly interface showing a base compound structure. A prediction of whether a particular compound is a substrate is queried against the acquired probabilistic knowledge base and a probability is returned as an indication of the prediction. This tool will be particularly useful in situations where a number of similar compounds have been screened experimentally, but information is not available for all possible members of that group of compounds. We use two case studies to demonstrate how to use the tool.
Resumo:
With the rapid growth in the quantity and complexity of scientific knowledge available for scientists, and allied professionals, the problems associated with harnessing this knowledge are well recognized. Some of these problems are a result of the uncertainties and inconsistencies that arise in this knowledge. Other problems arise from heterogeneous and informal formats for this knowledge. To address these problems, developments in the application of knowledge representation and reasoning technologies can allow scientific knowledge to be captured in logic-based formalisms. Using such formalisms, we can undertake reasoning with the uncertainty and inconsistency to allow automated techniques to be used for querying and combining of scientific knowledge. Furthermore, by harnessing background knowledge, the querying and combining tasks can be carried out more intelligently. In this paper, we review some of the significant proposals for formalisms for representing and reasoning with scientific knowledge.
Resumo:
The number of clinical trials reports is increasing rapidly due to a large number of clinical trials being conducted; it, therefore, raises an urgent need to utilize the clinical knowledge contained in the clinical trials reports. In this paper, we focus on the qualitative knowledge instead of quantitative knowledge. More precisely, we aim to model and reason with the qualitative comparison (QC for short) relations which consider qualitatively how strongly one drug/therapy is preferred to another in a clinical point of view. To this end, first, we formalize the QC relations, introduce the notions of QC language, QC base, and QC profile; second, we propose a set of induction rules for the QC relations and provide grading interpretations for the QC bases and show how to determine whether a QC base is consistent. Furthermore, when a QC base is inconsistent, we analyze how to measure inconsistencies among QC bases, and we propose different approaches to merging multiple QC bases. Finally, a case study on lowering intraocular pressure is conducted to illustrate our approaches.
Resumo:
A service is a remote computational facility which is made available for general use by means of a wide-area network. Several types of service arise in practice: stateless services, shared state services and services with states which are customised for individual users. A service-based orchestration is a multi-threaded computation which invokes remote services in order to deliver results back to a user (publication). In this paper a means of specifying services and reasoning about the correctness of orchestrations over stateless services is presented. As web services are potentially unreliable the termination of even finite orchestrations cannot be guaranteed. For this reason a partial-correctness powerdomain approach is proposed to capture the semantics of recursive orchestrations.