56 resultados para XXZ Hamiltonian
Resumo:
We discuss a simple architecture for a quantum TOFFOLI gate implemented using three trapped ions. The gate, which, in principle, can be implemented with a single laser-induced operation, is effective under rather general conditions and is strikingly robust (within any experimentally realistic range of values) against dephasing, heating, and random fluctuations of the Hamiltonian parameters. We provide a full characterization of the unitary and noise-affected gate using three-qubit quantum process tomography.
Resumo:
A new linear equations method for calculating the R-matrix, which arises in the R-matrix-Floquet theory of multiphoton processes, is introduced. This method replaces the diagonalization of the Floquet Hamiltonian matrix by the solution of a set of linear simultaneous equations which are solved, in the present work, by the conjugate gradient method. This approach uses considerably less computer memory and can be readily ported onto parallel computers. It will thus enable much larger problems of current interest to be treated. This new method is tested by applying it to three-photon ionization of helium at frequencies where double resonances with a bound state and autoionizing states are important. Finally, an alternative linear equations method, which avoids the explicit calculation of the R-matrix by incorporating the boundary conditions directly, is described in an appendix.
Resumo:
We describe recent progress of an ongoing research programme aimed at producing computational science software that can exploit high performance architectures in the atomic physics application domain. We examine the computational bottleneck of matrix construction in a suite of two-dimensional R-matrix propagation programs, 2DRMP, that are aimed at creating virtual electron collision experiments on HPC architectures. We build on Ixaru's extended frequency dependent quadrature rules (EFDQR) for Slater integrals and examine the challenge of constructing Hamiltonian matrices in parallel across an m-processor compute node in a block cyclic distribution for subsequent diagonalization by ScaLAPACK.
Resumo:
The treatment of the Random-Phase Approximation Hamiltonians, encountered in different frameworks, like time-dependent density functional theory or Bethe-Salpeter equation, is complicated by their non-Hermicity. Compared to their Hermitian Hamiltonian counterparts, computational methods for the treatment of non-Hermitian Hamiltonians are often less efficient and less stable, sometimes leading to the breakdown of the method. Recently [Gruning et al. Nano Lett. 8 (2009) 28201, we have identified that such Hamiltonians are usually pseudo-Hermitian. Exploiting this property, we have implemented an algorithm of the Lanczos type for Random-Phase Approximation Hamiltonians that benefits from the same stability and computational load as its Hermitian counterpart, and applied it to the study of the optical response of carbon nanotubes. We present here the related theoretical grounds and technical details, and study the performance of the algorithm for the calculation of the optical absorption of a molecule within the Bethe-Salpeter equation framework. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Despite the numerous experimental and theoretical studies on the negatively charged nitrogen vacancy center (NV-) in diamond and the predictions that the neutral nitrogen vacancy center (NV0) should have an S=1/2 ground state, NV0 has not previously been detected by electron paramagnetic resonance (EPR). We report new EPR data on a trigonal nitrogen-containing defect in diamond with an S=3/2 excited state populated via optical excitation. Analysis of the spin Hamiltonian parameters and the wavelength dependence of the optical excitation leads to assignment of this S=3/2 state to the (4)A(2) excited state of NV0. This identification, together with an examination of the electronic structure of the NV centers in diamond, provides a plausible explanation for the lack of observation (to date) of an EPR signal from the NV0 ground state.
Resumo:
We perform an extensive study of the properties of global quantum correlations in finite-size one-dimensional quantum spin models at finite temperature. By adopting a recently proposed measure for global quantum correlations (Rulli and Sarandy 2011 Phys. Rev. A 84 042109), called global discord, we show that critical points can be neatly detected even for many-body systems that are not in their ground state. We consider the transverse Ising model, the cluster-Ising model where three-body couplings compete with an Ising-like interaction, and the nearest-neighbor XX Hamiltonian in transverse magnetic field. These models embody our canonical examples showing the sensitivity of global quantum discord close to criticality. For the Ising model, we find a universal scaling of global discord with the critical exponents pertaining to the Ising universality class.
Resumo:
We propose an interferometric setting for the ancilla-assisted measurement of the characteristic function of the work distribution following a time-dependent process experienced by a quantum system. We identify how the configuration of the effective interferometer is linked to the symmetries enjoyed by the Hamiltonian ruling the process and provide the explicit form of the operations to implement in order to accomplish our task. We finally discuss two physical settings, based on hybrid optomechanical-electromechanical devices, where the theoretical proposals discussed in our work could find an experimental demonstration.
Resumo:
We address the estimation of purity for a quantum oscillator initially prepared in a displaced thermal state and probed by a suitably prepared qubit interacting with the oscillator via Jaynes-Cummings Hamiltonian without the rotating-wave approximation. We evaluate the quantum Fisher information (QFI) and show that optimal estimation of purity can be achieved by measuring the population of the qubit after a properly chosen interaction time. We also address the estimation of purity at fixed total energy and show that the corresponding precision is independent of the presence of a coherent amplitude.
Resumo:
We present an ab initio real-time-based computational approach to study nonlinear optical properties in condensed matter systems that is especially suitable for crystalline solids and periodic nanostructures. The equations of motion and the coupling of the electrons with the external electric field are derived from the Berry-phase formulation of the dynamical polarization [Souza et al., Phys. Rev. B 69, 085106 (2004)]. Many-body effects are introduced by adding single-particle operators to the independent-particle Hamiltonian. We add a Hartree operator to account for crystal local effects and a scissor operator to correct the independent particle band structure for quasiparticle effects. We also discuss the possibility of accurately treating excitonic effects by adding a screened Hartree-Fock self-energy operator. The approach is validated by calculating the second-harmonic generation of SiC and AlAs bulk semiconductors: an excellent agreement is obtained with existing ab initio calculations from response theory in frequency domain [Luppi et al., Phys. Rev. B 82, 235201 (2010)]. We finally show applications to the second-harmonic generation of CdTe and the third-harmonic generation of Si.
Resumo:
A reduced-density-operator description is developed for coherent optical phenomena in many-electron atomic systems, utilizing a Liouville-space, multiple-mode Floquet–Fourier representation. The Liouville-space formulation provides a natural generalization of the ordinary Hilbert-space (Hamiltonian) R-matrix-Floquet method, which has been developed for multi-photon transitions and laser-assisted electron–atom collision processes. In these applications, the R-matrix-Floquet method has been demonstrated to be capable of providing an accurate representation of the complex, multi-level structure of many-electron atomic systems in bound, continuum, and autoionizing states. The ordinary Hilbert-space (Hamiltonian) formulation of the R-matrix-Floquet method has been implemented in highly developed computer programs, which can provide a non-perturbative treatment of the interaction of a classical, multiple-mode electromagnetic field with a quantum system. This quantum system may correspond to a many-electron, bound atomic system and a single continuum electron. However, including pseudo-states in the expansion of the many-electron atomic wave function can provide a representation of multiple continuum electrons. The 'dressed' many-electron atomic states thereby obtained can be used in a realistic non-perturbative evaluation of the transition probabilities for an extensive class of atomic collision and radiation processes in the presence of intense electromagnetic fields. In order to incorporate environmental relaxation and decoherence phenomena, we propose to utilize the ordinary Hilbert-space (Hamiltonian) R-matrix-Floquet method as a starting-point for a Liouville-space (reduced-density-operator) formulation. To illustrate how the Liouville-space R-matrix-Floquet formulation can be implemented for coherent atomic radiative processes, we discuss applications to electromagnetically induced transparency, as well as to related pump–probe optical phenomena, and also to the unified description of radiative and dielectronic recombination in electron–ion beam interactions and high-temperature plasmas.
Resumo:
We analyze the nature of the statistics of the work done on or by a quantum many-body system brought out of equilibrium. We show that, for the sudden quench and for an initial state that commutes with the initial Hamiltonian, it is possible to retrieve the whole nonequilibrium thermodynamics via single projective measurements of observables. We highlight, in a physically clear way, the qualitative implications for the statistics of work coming from considering processes described by operators that either commute or do not commute with the unperturbed Hamiltonian of a given system. We consider a quantum many-body system and derive an expression that allows us to give a physical interpretation, for a thermal initial state, to all of the cumulants of the work in the case of quenched operators commuting with the unperturbed Hamiltonian. In the commuting case, the observables that we need to measure have an intuitive physical meaning. Conversely, in the noncommuting case, we show that, although it is possible to operate fully within the single-measurement framework irrespectively of the size of the quench, some difficulties are faced in providing a clear-cut physical interpretation to the cumulants. This circumstance makes the study of the physics of the system nontrivial and highlights the nonintuitive phenomenology of the emergence of thermodynamics from the fully quantum microscopic description. We illustrate our ideas with the example of the Ising model in a transverse field showing the interesting behavior of the high-order statistical moments of the work distribution for a generic thermal state and linking them to the critical nature of the model itself.
Resumo:
We consider a system composed of a qubit interacting with a quartic (undriven) nonlinear oscillator (NLO) through a conditional displacement Hamiltonian. We show that even a modest nonlinearity can enhance and stabilize the quantum entanglement dynamically generated between the qubit and the NLO. In contrast to the linear case, in which the entanglement is known to oscillate periodically between zero and its maximal value, the nonlinearity suppresses the dynamical decay of the entanglement once it is established. While the entanglement generation is due to the conditional displacements, as noted in several works before, the suppression of its decay is related to the presence of squeezing and other complex processes induced by two- and four-phonon interactions. Finally, we solve the respective Markovian master equation, showing that the previous features are preserved also when the system is open.
Resumo:
Recent experiments on Au break junctions [Phys. Rev. Lett. 88 (2002) 216803] have characterized the nonlinear conductance of stretched short Au nanowires. They reveal in the voltage range 10-20 meV the signatures of dissipation effects, likely due to phonons in the nanowire, reducing the conductance below the quantized value of 2e(2)/h. We present here a theory, based on a model tight-binding Hamiltonian and on non-equilibrium Green's function techniques, which accounts for the main features of the experiment. The theory helps in revealing details of the experiment which need to be addressed with a more realistic, less idealized, theoretical framework. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Physical modelling of musical instruments involves studying nonlinear interactions between parts of the instrument. These can pose several difficulties concerning the accuracy and stability of numerical algorithms. In particular, when the underlying forces are non-analytic functions of the phase-space variables, a stability proof can only be obtained in limited cases. An approach has been recently presented by the authors, leading to unconditionally stable simulations for lumped collision models. In that study, discretisation of Hamilton’s equations instead of the usual Newton’s equation of motion yields a numerical scheme that can be proven to be energy conserving. In this paper, the above approach is extended to collisions of distributed objects. Namely, the interaction of an ideal string with a flat barrier is considered. The problem is formulated within the Hamiltonian framework and subsequently discretised. The resulting nonlinearmatrix equation can be shown to possess a unique solution, that enables the update of the algorithm. Energy conservation and thus numerical stability follows in a way similar to the lumped collision model. The existence of an analytic description of this interaction allows the validation of the model’s accuracy. The proposed methodology can be used in sound synthesis applications involving musical instruments where collisions occur either in a confined (e.g. hammer-string interaction, mallet impact) or in a distributed region (e.g. string-bridge or reed-mouthpiece interaction).
Resumo:
We provide insight into the quantum correlations structure present in strongly correlated systems beyond the standard framework of bipartite entanglement. To this aim we first exploit rotationally invariant states as a test bed to detect genuine tripartite entanglement beyond the nearest neighbor in spin-1/2 models. Then we construct in a closed analytical form a family of entanglement witnesses which provides a sufficient condition to determine if a state of a many-body system formed by an arbitrary number of spin-1/2 particles possesses genuine tripartite entanglement, independently of the details of the model. We illustrate our method by analyzing in detail the anisotropic XXZ spin chain close to its phase transitions, where we demonstrate the presence of long-range multipartite entanglement near the critical point and the breaking of the symmetries associated with the quantum phase transition.