35 resultados para Waste water


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth of the construction industry worldwide poses a serious concern on the sustainability of the building material production chain, mainly due to the carbon emissions related to the production of Portland cement. On the other hand, valuable materials from waste streams, particularly from the metallurgical industry, are not used at their full potential. Alkali activated concrete (AAC) has emerged in the last years as a promising alternative to traditional Portland cement based concrete for some applications. However, despite showing remarkable strength and durability potential, its utilisation is not widespread, mainly due to the lack of broadly accepted standards for the selection of suitable mix recipes fulfilling design requirements, in particular workability, setting time and strength. In this paper, a contribution towards the design development of AAC synthetized from pulverised fuel ash (60%) and ground granulated blast furnace slag (40%) activated with a solution of sodium hydroxide and sodium silicate is proposed. Results from a first batch of mixes indicated that water content influences the setting time and that paste content is a key parameter for controlling strength development and workability. The investigation indicated that, for the given raw materials and activator compositions, a minimum water to solid (w/s) ratio of 0.37 was needed for an initial setting time of about 1 hour. Further work with paste content in the range of 30% to 33% determined the relationship between workability and strength development and w/s ratio and paste content. Strengths in the range of 50 - 60 MPa were achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Worldwide, the building sector requires the production of 4 billion tonnes of cement annually, consuming more than 40% of global energy. Alkali activated “cementless” binders have recently emerged as a novel eco-friendly construction material with a promising potential to replace ordinary Portland cement. These binders consist of a class of inorganic polymer formed mainly by the reaction between an alkaline solution and an aluminosilicate source. Precursor materials for this reaction can be found in secondary material streams from different industrial sectors, from energy to agro-alimentary. However, the suitability of these materials in developing the polymerisation reaction must be assessed through a detailed chemical and physical characterisation, ensuring the availability of required chemical species in the appropriate quantity and physical state. Furthermore, the binder composition needs to be defined in terms of proper alkali activation dosages, water content in the mix, and curing conditions. The mix design must satisfy mechanical requirements and compliance to desired engineering properties (workability, setting time) for ensuring the suitability of the binder in replacing Portland cement in concrete applications. This paper offers a structured approach for the development of secondary material-based binders, from their identification to mix design and production procedure development. Essential features of precursor material can be determined through chemical and physical characterisation methods and advanced microscope techniques. Important mixing parameters and binder properties requirements are examined and some examples of developed binders are reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the main challenges faced by the nuclear industry is the long-term confinement of nuclear waste. Because it is inexpensive and easy to manufacture, cement is the material of choice to store large volumes of radioactive materials, in particular the low-level medium-lived fission products. It is therefore of utmost importance to assess the chemical and structural stability of cement containing radioactive species. Here, we use ab initio calculations based on density functional theory (DFT) to study the effects of 90Sr insertion and decay in C-S-H (calcium-silicate-hydrate) in order to test the ability of cement to trap and hold this radioactive fission product and to investigate the consequences of its β-decay on the cement paste structure. We show that 90Sr is stable when it substitutes the Ca2+ ions in C-S-H, and so is its daughter nucleus 90Y after β-decay. Interestingly, 90Zr, daughter of 90Y and final product in the decay sequence, is found to be unstable compared to the bulk phase of the element at zero K but stable when compared to the solvated ion in water. Therefore, cement appears as a suitable waste form for 90Sr storage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coast of the Bulgarian Black Sea is a popular summer holiday destination. The Dam of Iskar is the largest artificial dam in Bulgaria, with a capacity of 675 million m3. It is the main source of tap water for the capital Sofia and for irrigating the surrounding valley. There is a close relationship between the quality of aquatic ecosystems and human health as many infections are waterborne. Rapid molecular methods for the analysis of highly pathogenic bacteria have been developed for monitoring quality. Mycobacterial species can be isolated from waste, surface, recreational, ground and tap waters and human pathogenicity of nontuberculose mycobacteria (NTM) is well recognized. The objective of our study was to perform molecular analysis for key-pathogens, with a focus on mycobacteria, in water samples collected from the Black Sea and the Dam of Iskar. In a two year period, 38 water samples were collected-24 from the Dam of Iskar and 14 from the Black Sea coastal zone. Fifty liter water samples were concentrated by ultrafiltration. Molecular analysis for 15 pathogens, including all species of genus Mycobacterium was performed. Our results showed presence of Vibrio spp. in the Black Sea. Rotavirus A was also identified in four samples from the Dam of Iskar. Toxigenic Escherichia coli was present in both locations, based on markers for stx1 and stx2 genes. No detectable amounts of Cryptosporidium were detected in either location using immunomagnetic separation and fluorescence microscopy. Furthermore, mass spectrometry analyses did not detect key cyanobacterial toxins. On the basis of the results obtained we can conclude that for the period 2012-2014 no Mycobacterium species were present in the water samples. During the study period no cases of waterborne infections were reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The internal combustion (IC) engines exploits only about 30% of the chemical energy ejected through combustion, whereas the remaining part is rejected by means of cooling system and exhausted gas. Nowadays, a major global concern is finding sustainable solutions for better fuel economy which in turn results in a decrease of carbon dioxide (CO2) emissions. The Waste Heat Recovery (WHR) is one of the most promising techniques to increase the overall efficiency of a vehicle system, allowing the recovery of the heat rejected by the exhaust and cooling systems. In this context, Organic Rankine Cycles (ORCs) are widely recognized as a potential technology to exploit the heat rejected by engines to produce electricity. The aim of the present paper is to investigate a WHR system, designed to collect both coolant and exhausted gas heats, coupled with an ORC cycle for vehicle applications. In particular, a coolant heat exchanger (CLT) allows the heat exchange between the water coolant and the ORC working fluid, whereas the exhausted gas heat is recovered by using a secondary circuit with diathermic oil. By using an in-house numerical model, a wide range of working conditions and ORC design parameters are investigated. In particular, the analyses are focused on the regenerator location inside the ORC circuits. Five organic fluids, working in both subcritical and supercritical conditions, have been selected in order to detect the most suitable configuration in terms of energy and exergy efficiencies.