91 resultados para Vitamin B1.
Resumo:
A central paradox of vitamin D biology is that 1alpha,25-(OH)(2) D(3) exposure inversely relates to colorectal cancer (CRC) risk despite a capacity for activation of both pro- and anti-oncogenic mediators including osteopontin (OPN)/CD44 and E-cadherin, respectively. Most sporadic CRCs arise from adenomatous polyposis coli (APC) gene mutation but understanding of its effects on vitamin D growth control is limited. Here we investigate effects of the Apc(Min/+) genotype on 1alpha,25-(OH)(2) D(3) regulation of OPN/CD44/E-cadherin signalling and intestinal tumourigenesis, in vivo. In untreated Apc(Min/+) versus Apc(+/+) intestines, expression levels of OPN and its CD44 receptor were increased, whereas E-cadherin tumour suppressor signalling was attenuated. Treatment by 1alpha,25-(OH)(2) D(3) or rationally designed analogues (QW or BTW) enhanced OPN but inhibited expression of CD44, the OPN receptor implicated in cell growth. These treatments also enhanced E-cadherin tumour suppressor activity, characterized by inhibition of beta-catenin nuclear localization, T-cell factor 1 and c-myelocytomatosis protein expression in Apc(Min/+) intestine. All secosteroids suppressed Apc(Min/+)-driven tumourigenesis although QW and BTW had lower calcium-related toxicity. Taken together, these data indicate that the Apc(Min/+) genotype modulates vitamin D secosteroid actions to promote functional predominance of E-cadherin tumour suppressor activity within antagonistic molecular networks. APC heterozygosity may promote favourable tissue- or tumour-specific conditions for growth control by vitamin D secosteroid treatment.
Resumo:
We have conducted a sensitive 3mm observation toward the shocked region, Lynds 1157 B1, which is an interaction spot between a molecular outflow and its ambient gas. We have successfully detected the CH3CHO, HCOOCH3, and HCOOH lines, as well as the CH2DOH line. The abundances of these molecules relative to CH3OH are found to be lower than those in the low-mass star-forming core, IRAS 16293-2422. Since these molecules are thought to evaporate from grain mantles, the observational results mean that complex molecules are less abundant in grain mantles residing in the ambient cloud surrounding a prestellar/protostellar core. Instead, efficient formation of the complex organic species and deuterated species should take place in a prestellar/protostellar core. The present result verifies the importance of an unbiased line survey of this source.
Resumo:
Scurvy has increasingly been recognized in archaeological populations since the 1980s but this study represents the first examination of the paleopathological findings of scurvy in a known famine population. The Great Famine (1845–1852) was a watershed in Irish history and resulted in the death of one million people and the mass emigration of just as many. It was initiated by a blight which completely wiped out the potato—virtually the only source of food for the poor of Ireland. This led to mass starvation and a widespread occurrence of infectious and metabolic diseases. A recent discovery of 970 human skeletons from mass burials dating to the height of the famine in Kilkenny City (1847–1851) provided an opportunity to study the skeletal manifestations of scurvy—a disease that became widespread at this time due to the sudden lack of Vitamin C which had previously almost exclusively been provided by the potato. A three-scale diagnostic reliance approach has been employed as a statistical aid for diagnosing the disease in the population. A biocultural approach was adopted to enable the findings to be contextualized and the etiology and impact of the disease explored. The results indicate that scurvy indirectly influenced famine-induced mortality. A sex and stature bias is evident among adults in which males and taller individuals displayed statistically significantly higher levels of scorbutic lesions. The findings have also suggested that new bone formation at the foramen rotundum is a diagnostic criterion for the paleopathological identification of scurvy, particularly among juveniles. Am J Phys Anthropol, 2012. © 2012 Wiley Periodicals, Inc.
Resumo:
Pantothenicacid (PA), vitamin B5, is an essential B vitamin that may be fortified in food and as such requires robust and accurate methods of detection to meet compliance legislation. This study reports the production and characterisation of the first monoclonalantibody (MAb) specific for PA and the subsequent development of a surface plasmon resonance (SPR) biosensorassay for the quantification of PA. The developed assay was compared with an SPR based commercial kit which utilised a polyclonal antibody (PAb). Foodstuffs, including cereals (n = 43), infant formulas and baby food (n = 10) and fruit juices (n = 48) were analysed by both the MAb and PAb biosensorassays and comparison plots showed good correlation (R2 0.77–0.99). The results indicate that the MAb basedbiosensorassay is suitable for the measurement of PA in foodstuffs and has the added advantage of facilitating a constant, long term supply of identical antibody. Preliminary matrix studies suggest the MAb basedassay is an excellent candidate for further validation studies and routine quality assurance based analysis.