53 resultados para Vision algorithms for grasping
Resumo:
The characterization of thermocouple sensors for temperature measurement in variable flow environments is a challenging problem. In this paper, novel difference equation-based algorithms are presented that allow in situ characterization of temperature measurement probes consisting of two-thermocouple sensors with differing time constants. Linear and non-linear least squares formulations of the characterization problem are introduced and compared in terms of their computational complexity, robustness to noise and statistical properties. With the aid of this analysis, least squares optimization procedures that yield unbiased estimates are identified. The main contribution of the paper is the development of a linear two-parameter generalized total least squares formulation of the sensor characterization problem. Monte-Carlo simulation results are used to support the analysis.
Resumo:
Here, we describe a motion stimulus in which the quality of rotation is fractal. This makes its motion unavailable to the translationbased motion analysis known to underlie much of our motion perception. In contrast, normal rotation can be extracted through the aggregation of the outputs of translational mechanisms. Neural adaptation of these translation-based motion mechanisms is thought to drive the motion after-effect, a phenomenon in which prolonged viewing of motion in one direction leads to a percept of motion in the opposite direction. We measured the motion after-effects induced in static and moving stimuli by fractal rotation. The after-effects found were an order of magnitude smaller than those elicited by normal rotation. Our findings suggest that the analysis of fractal rotation involves different neural processes than those for standard translational motion. Given that the percept of motion elicited by fractal rotation is a clear example of motion derived from form analysis, we propose that the extraction of fractal rotation may reflect the operation of a general mechanism for inferring motion from changes in form.
Resumo:
Computionally efficient sequential learning algorithms are developed for direct-link resource-allocating networks (DRANs). These are achieved by decomposing existing recursive training algorithms on a layer by layer and neuron by neuron basis. This allows network weights to be updated in an efficient parallel manner and facilitates the implementation of minimal update extensions that yield a significant reduction in computation load per iteration compared to existing sequential learning methods employed in resource-allocation network (RAN) and minimal RAN (MRAN) approaches. The new algorithms, which also incorporate a pruning strategy to control network growth, are evaluated on three different system identification benchmark problems and shown to outperform existing methods both in terms of training error convergence and computational efficiency. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Local Controller Networks (LCNs) provide nonlinear control by interpolating between a set of locally valid, subcontrollers covering the operating range of the plant. Constructing such networks typically requires knowledge of valid local models. This paper describes a new genetic learning approach to the construction of LCNs directly from the dynamic equations of the plant, or from modelling data. The advantage is that a priori knowledge about valid local models is not needed. In addition to allowing simultaneous optimisation of both the controller and validation function parameters, the approach aids transparency by ensuring that each local controller acts independently of the rest at its operating point. It thus is valuable for simultaneous design of the LCNs and identification of the operating regimes of an unknown plant. Application results from a highly nonlinear pH neutralisation process and its associated neural network representation are utilised to illustrate these issues.
Resumo:
The divide-and-conquer approach of local model (LM) networks is a common engineering approach to the identification of a complex nonlinear dynamical system. The global representation is obtained from the weighted sum of locally valid, simpler sub-models defined over small regions of the operating space. Constructing such networks requires the determination of appropriate partitioning and the parameters of the LMs. This paper focuses on the structural aspect of LM networks. It compares the computational requirements and performances of the Johansen and Foss (J&F) and LOLIMOT tree-construction algorithms. Several useful and important modifications to each algorithm are proposed. The modelling performances are evaluated using real data from a pilot plant of a pH neutralization process. Results show that while J&F achieves a more accurate nonlinear representation of the pH process, LOLIMOT requires significantly less computational effort.
Resumo:
A new method for automated coronal loop tracking, in both spatial and temporal domains, is presented. Applying this technique to TRACE data, obtained using the 171 angstrom filter on 1998 July 14, we detect a coronal loop undergoing a 270 s kink-mode oscillation, as previously found by Aschwanden et al. However, we also detect flare-induced, and previously unnoticed, spatial periodicities on a scale of 3500 km, which occur along the coronal loop edge. Furthermore, we establish a reduction in oscillatory power for these spatial periodicities of 45% over a 222 s interval. We relate the reduction in detected oscillatory power to the physical damping of these loop-top oscillations.
Resumo:
A novel methodology is proposed for the development of neural network models for complex engineering systems exhibiting nonlinearity. This method performs neural network modeling by first establishing some fundamental nonlinear functions from a priori engineering knowledge, which are then constructed and coded into appropriate chromosome representations. Given a suitable fitness function, using evolutionary approaches such as genetic algorithms, a population of chromosomes evolves for a certain number of generations to finally produce a neural network model best fitting the system data. The objective is to improve the transparency of the neural networks, i.e. to produce physically meaningful